Statistical Mechanics and Many B0dy Models.pdf


Preview of PDF document statistical-mechanics-and-many-b0dy-models.pdf

Page 1 23478

Text preview


Contents
1

Introduction

2

2 Quantum Statistical Mechanics and Solid State Physics

2

3 Magnetic Properties of Substances and Models of Magnetic Materials

4

4 Quantum Theory of Magnetism
4.1 The Method of Model Hamiltonians . . . . . . .
4.2 The Problem of Magnetism of Itinerant Electrons
4.3 The Anderson and Hubbard Models . . . . . . .
4.4 The s-d Exchange Model and the Zener model .
4.5 Falicov-Kimball Model . . . . . . . . . . . . . . .
4.6 The Adequacy of the Model Description . . . . .

.
.
.
.
.
.

8
9
11
12
14
15
16

5 Theory of Many-particle Systems with Interactions
5.1 Two-time Temperature Green’s Functions . . . . . . . . . . . . . . . . . . . . . . .
5.2 The Method of Irreducible Green’s Functions . . . . . . . . . . . . . . . . . . . . .

17
18
23

6 The
6.1
6.2
6.3
6.4

.
.
.
.

26
30
32
36
39

7 Broken Symmetry, Quasiaverages, and Physics of Magnetic Materials
7.1 Quantum Protectorate and Microscopic Models of Magnetism . . . . . . . . . . . .

42
45

8 The Lawrence-Doniach Model

47

9 Nonequilibrium Statistical Operators and Quasiaverages in the Theory of Irreversible Processes
9.1 Generalized Kinetic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Generalized Kinetic Equations for a System in a Thermal Bath . . . . . . . . . . .
9.3 A Schr¨
odinger-Type Equation for a Dynamic System in a Thermal Bath . . . . . .

49
52
53
54

10 Conclusion

58

11 Acknowledgements

58

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

Generalized Mean Fields
Heisenberg Antiferromagnet and Anomalous Averages . . . . . . . .
Many-particle Systems with Strong and Weak Electron Correlations
Superconductivity Equations . . . . . . . . . . . . . . . . . . . . . .
Magnetic Polaron Theory . . . . . . . . . . . . . . . . . . . . . . . .

1

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.