WR (PDF)




File information


This PDF 1.5 document has been generated by TeX / pdfTeX-1.40.14, and has been sent on pdf-archive.com on 24/04/2014 at 16:29, from IP address 198.39.x.x. The current document download page has been viewed 781 times.
File size: 83.04 KB (1 page).
Privacy: public file




Document preview - WR.pdf - Page 1/1





File preview


Writing Assignment #2
Proposition. Let H ≤ G and define a relation on G by x ∼ y if y −1 x ∈ H, then ∼ is an equivalence
relation on G and the equivalence classes of ∼ are left cosets of H in G.

To show that ∼ is an equivalence relation on G we will check to verify that ∼ is reflexive, symmetric and
transitive
Reflexive: Suppose that x ∈ G then x−1 x ∈ H, since H is a subgroup the identity is in H, so then a ∼ a
and ∼ is reflexive.
Symmetric: Suppose that x, y ∈ G and x ∼ y then y −1 x ∈ H. Since H is a subgroup, H is closed
under inverses then (y −1 x)−1 ∈ H. So then (y −1 x)−1 = x−1 (y −1 )−1 = x−1 y ∈ H and then y ∼ x and ∼ is
symmetric.
Transitive: Suppose that x ∼ y and y ∼ z then y −1 x ∈ H and z −1 y ∈ H, since H is a subgroup it is
closed under products so then,
(z −1 y)(y −1 x) = z −1 (yy −1 )x = z −1 ex = z −1 x
and z −1 x ∈ H and then x ∼ z and ∼ is transitive.
Thus ∼ satisfies the reflexive, symmetric and transitive properties therefore ∼ is an equivalence relation
on G.
For any x ∈ G the equivalence classes of x are [x] = {y ∈ G : y ∼ x} and the left cosets of H in G are
xH = {xh : h ∈ H}, all that is left is to show that [x] = xH and since these objects are sets we must show
that [x] ⊆ xH and xH ⊆ [x].
Suppose that a ∈ [x], so then a ∼ x and x−1 a ∈ H. If we set h = x−1 a for some h ∈ H then a = xh and
a ∈ xH. Therefore [x] ⊆ xH.
Next suppose that a ∈ xH then set a = xh for some h ∈ H, and then x−1 a = h and x−1 a ∈ H. By
definition of ∼, a ∼ x so then a ∈ [x] and xH ⊆ [x].
Finally since we have shown that [x] ⊆ xH and xH ⊆ [x], then [x] = xH and the equivalence classes of ∼
are left cosets of H in G. 






Download WR



WR.pdf (PDF, 83.04 KB)


Download PDF







Share this file on social networks



     





Link to this page



Permanent link

Use the permanent link to the download page to share your document on Facebook, Twitter, LinkedIn, or directly with a contact by e-Mail, Messenger, Whatsapp, Line..




Short link

Use the short link to share your document on Twitter or by text message (SMS)




HTML Code

Copy the following HTML code to share your document on a Website or Blog




QR Code to this page


QR Code link to PDF file WR.pdf






This file has been shared publicly by a user of PDF Archive.
Document ID: 0000158955.
Report illicit content