POKHARA UNIVERSITY

Level: Bachelor \quad Semester - Fall	Year 2005	
Programme: BE		Full Marks: 100
Course: Electromagnetic Propagation and Antenna	Time : Shrs.	

Candidates are required to give their answers in their own words as far as practicable.
The figures in the margin indicate full marks.
Attempt all the questions.

1. Find the expression for power radiated by a current element.
2. a) What do you mean by the directive gain of an antenna? Show that the directivity of a half wave dipole is 2.15 dBi .
b) Prove that maximum effective area of any antenna is $1.5 \lambda^{2} / 4 \pi$
3. a) What do you mean by parasitic array. Discuss about Yagi-Uda antenna.
b) Find the pattern for an eight-element array obtained by principle of multiplication of patterns.
4. a) For transmit-receive system, derive the expression for free space loss (FSL) in decibel (dB) and signal-to-noise ratio (S / N) for a receiving system.
b) Consider a link at a frequency $\mathrm{f}=14 \mathrm{GHz}$ between a TV satellite in geostationary orbit and a parabolic receiving antenna of the surface of the Earth, at a distance $\mathrm{d}=36,000 \mathrm{Km}$ from the satellite. The transmit power is $P_{T}=100 \mathrm{~W}$, and the transmit antenna gain is $G_{T}=40 \mathrm{~dB}$.
i. Determine the power density $\mathrm{dP} / \mathrm{dS}\left(\mathrm{Watt} / \mathrm{m}^{2}\right)$ at the receive antenna.
ii. The TV picture quality is acceptable if the receiver antenna (assumed lossless) receives a power P_{R} which exceeds a threshold $\mathrm{P}_{0}=2 \times 10^{-11} \mathrm{~W}$. What should the antenna area S_{A} and the antenna gain G_{A} (in dB) to achieve this?
5. a) Define Fresnel reflection coefficient (Г). Assuming earth as lossy
b) Derive the expression for refractive index of ionosphere and the maximum usable frequency (MUF).
6. a) Consider the case for synchronous satellite relay, where 6 GHz is used for ground to satellite link and 4 GHz is used for satellite to ground link. Consider 28 meter diameter ground antenna and 0.28 meter diameter satellite antenna assuming 67% effective area and height of the satellite is $36,000 \mathrm{~km}$. Find the following:
i. Basic transmission loss
ii. Maximum directive gain
iii. With ground transmitter power of 12 kw , the power received at the satellite receiver.
iv. With satellite transmitter power of 1 w , the power received at ground antenna.
b) Draw the block diagram of optical fiber communication. Explain each block in brief.
7. Write short notes on (Any Two)
a) Horn antenna
b) SID
c) Half power beamwidth
d) Antenna Temperature and signal to Noise ratio.

Electromagnetic Propagation \& antenna.
CHAPTER-I

$$
\frac{\text { INTRODUCTION }}{(15-25 \text { marks })}
$$

* Review of Electromagnetic: waves and equations: G maxivells eqn.
s Electromagnetic wave sean of wa re propagation. \# A plane wave is a wo

H Uniform plane wave is the one whose magridud and phase are constant.
FA spherical plane wave is the one whir ch appears to be a uniform plane wave observed at far distance

* E.M waves originates from a point spreads. out uniformly in all direction and is a form of spherical wave."
y properties of plane wave

1. At every point in space, electric field E and magnetic field vector H are perpendicular to each other and to direction of propagation Thus plane wave is transverse ie. E \& Harl both 90° to direction of propagation.
2. velocity of wave in free space

$$
\theta=\frac{1}{\sqrt{\omega_{0} \epsilon_{0}}}=3 \times 10^{8}
$$

3.E. \& H oscillates in phase and ratio of magnitu de of \in \& MAs constant ie 120TT. 3.77Ω

$$
\therefore e \varepsilon / 4=120 \sim
$$

* Ware Impedance.
\# The ware imper dance is defined us:-

$$
Z=\frac{\text { Electric field component }}{\text { magnetic field component }}
$$

\# For Transverse EM wave, there exists only one component of each of the electric feed. and magnetic fields resulting only one wave impedance generally called intrinsic wave impedance no,

$$
\left.n_{0}=\frac{E_{x}}{H_{y}} \text { [free space }\right]
$$

poyoling vector.

* A poynting vector \vec{D} is the cross product of $\vec{E} \& \vec{n}$

$$
\vec{P}=\vec{E} \times \vec{r}
$$

The magnitude of \vec{D} represents ane instantaneous power density (ω / m^{2}) at a point and its direction indicates direction of power flow of that point d is perpendicular to plane containing E and 4.

* For perfect dielection medium

$$
\begin{aligned}
E_{x} & =E_{x_{0}} \cos (\omega t-\beta z] \\
H y & =\frac{E_{x}}{n}=\frac{1}{n} E_{0} \cos (\omega t-\beta z) \\
\& & P_{z}
\end{aligned}=E_{x} \cdot H y=1 / 2 \operatorname{Ex}_{0}^{2} \cos ^{2}(t-\beta z) \quad \text { (used }
$$

* Average power clensing can be calculated as

$$
\begin{aligned}
P_{2} \text { ain } & =\frac{1}{T} \int \frac{1}{2} E x_{0}^{2} \cos ^{2}(\omega t-B Z) d \\
& \frac{1}{2 n} \in x_{0}^{2} \quad\left(w\left(m^{2}\right)\right.
\end{aligned}
$$

廿 Retarded Potential defined by

$$
\begin{equation*}
=V=\int \frac{S L d}{4 \pi} \tag{v}
\end{equation*}
$$

where r is distance belweendleppunded consideration.
t Similarly vector magnetic potential is defined as

$$
A_{i}^{0}=\hat{d} \frac{\text { el Id }}{4 \pi r}(\omega b / m)
$$

* Here β_{l} and I don't change with hie and. therefore V and A at the point of interest are fixed for all the tire e
\# But if ρ_{L} and I vary with brose then their values seen at the time of measurement cant $^{t} \mathrm{be}$ used to calculate $v a \overrightarrow{4}$ at distant point because it takes time to reach the effect from the source to the point of interest. The values of $\rho_{L} \& I$ which contributed the effect has already been changed to some other values:

$$
\begin{aligned}
& v=\int \frac{\left[S_{L}\right] d L}{4 \pi \in r} \\
& \vec{A}=\oint \frac{\mu[I] d \vec{l}}{4 \pi r}
\end{aligned}
$$

The v and A axe respectively termed as retarded electric scalar potential e retarded vector magnetic potential. The symbol [] represents that the correspon-ling quantity has been retarded in time in order to encompass. the the lapsed in propagating the effect Form the source tr e the point where the quantity is being calculated

$$
\left[I D=J_{0} \cos \left[\omega\left(t-t^{\prime}\right)\right] \quad t^{\prime}=r / v\right.
$$

* Electric and Magnetic Fields dueto altemaniga current a bong electric orpole.
t Consider a current element or electric dipole of elembolay length ${ }^{\prime}$ with variation in current as

$$
I=I o \cos w(t-R / v)
$$

where v -velocity

$R=$ distance between centre of small arrent element de and point of consiatation

* Now retarded potential can be obtained as magnet vector potential

$$
\vec{A}=\oint \frac{\mu[T] d C}{4 T R}
$$

Here the direction af A is in the direction of current or di ie e along z azeis and is retarder in time by R / v sec.
\# Assuming the current to be uniform throughout th length ot any hime't' and since the length of dipole is very small.

$$
\begin{aligned}
& \sqrt{d c}=d 2 \hat{2} \sqrt{R} \approx r \\
& \therefore \vec{A}=g \frac{\mu I_{0} \cos w(t-\gamma / v) d 2 \cdot \hat{z}}{4 \pi r}
\end{aligned}
$$

The integration along length will be

$$
\vec{A}=\frac{\mu I_{0} \cos \omega(t-r / v) \ell \hat{z}}{4 \pi \gamma}
$$

\# we know,

$$
\begin{aligned}
& \vec{A}=A_{x}+A_{y}+A_{z} \\
& A_{x}=A_{y}=0 \\
& A_{2}=\frac{\mu_{0} \cos w(t-r n) l}{4 \pi r}
\end{aligned}
$$

$$
\begin{aligned}
& A r=A_{2} \cos \theta \\
& A \theta=-A_{2} \sin \theta=\frac{\mu I_{0} \cos \omega(t-r / v) \cos \theta}{4 \pi x} \\
& A I_{0} \cos \omega(t-r / v) \sin \theta \\
& 4 \pi r
\end{aligned}
$$

$$
A \phi=0
$$

*From the definition of \vec{A} we may derive the mane field \bar{H} as

$$
\begin{aligned}
& \vec{H}=\frac{1}{\mu}(\nabla \times \vec{A}) \\
& \nabla \times \vec{A}=\frac{1}{r^{2} \sin \theta}\left|\begin{array}{ccc}
\hat{V}_{r} & r \hat{V}_{\theta} & r \sin \theta \hat{V}_{\phi} \\
\partial / \partial r & \partial / \partial \theta & \partial / \partial \phi \\
A_{r} & r A_{\theta} & r \sin \theta A \phi
\end{array}\right| \\
& H_{r}=\frac{1}{\mu}\left[\frac{1}{r^{2} \sin \theta}\left(\partial / \partial \theta\left(r \sin \theta A \phi^{0}\right)^{0}-\partial \partial \phi^{(r A \theta}\right)^{0}\right. \\
& H_{r}=0 \\
& H_{\theta}=\frac{1}{\mu}\left[\frac{r}{r^{2} \sin \theta}(-\partial / \partial r(r \sin \theta \Delta \phi)+\partial / \partial \phi(A r))\right. \\
& H \theta=0 \\
& H \theta=\frac{1}{u}\left[\frac{r \sin \theta}{r^{2} \sin \theta}\left\{\partial / \partial r\left(r A_{\theta}\right)-d / \partial \theta(A r)\right\}\right] \\
& H_{\phi}=1 / u\left[1 / r d \rho_{\partial r}\left(r A_{\theta}\right)-\partial_{/ \partial \theta}(A r) \xi\right]
\end{aligned}
$$

$$
\begin{aligned}
& \partial / \partial r\left(r A_{\theta}\right)=\partial / \partial r\left(x-\mu \rho I_{0} \cos \omega\left(t-r_{\nu}\right) \sin \theta\right) \\
& =-\mu \operatorname{I} \\
& =\frac{-\mu t_{0} \omega \sin \theta \sin \omega t}{4 \operatorname{tr}} \quad[\because u=t r] \\
& \partial_{0}(A r)=\frac{d}{\partial \theta}\left[\frac{\left.\mu \theta I_{0} \cos \mu(t-r v) \cos 0\right]}{4 \pi r}\right. \\
& =\frac{\mu l \operatorname{Iocos} \omega t^{\prime} \sin \theta}{4 \pi r}
\end{aligned}
$$

Then.

$$
\begin{aligned}
& H_{\phi}=\frac{1}{\mu t}\left[\frac{\mu l I_{0} \omega \sin \theta \sin \omega t^{\prime}}{4 \pi \gamma v}+\frac{\mu l I_{0} \cos \omega t^{\prime} \sin \theta}{4 \pi r^{2}}\right] \\
& H_{\phi}=\frac{l I_{0} \sin \theta}{4 \pi}\left[\frac{\cos \omega t^{\prime}}{r^{2}}-\frac{\omega \sin \omega t^{\prime}}{v \gamma}\right]
\end{aligned}
$$

Next,
Electric field can be obtained as

$$
\vec{E}=1 / \epsilon \int \nabla \times \vec{H} d t
$$

Now,

$$
\begin{aligned}
& E_{r}=\frac{1}{\epsilon} \int \frac{1}{r^{2} \sin \theta}\left[d / \partial \theta(r \sin \theta+\phi)-\partial \theta_{\phi}\left(r d^{9} \theta\right)\right] d t \\
& \text { on dh fiferandrialion }
\end{aligned}
$$

$$
\begin{aligned}
& E_{r}=\frac{I_{0} l \cos \theta}{2 \pi \epsilon r} \int\left(\frac{\cos \omega t^{\prime}}{r^{2}}-\frac{w \sin \omega t^{\prime}}{r V}\right) a t \\
& E_{r}=\frac{I_{0} l \cos \theta}{2 \pi \epsilon}\left[\frac{\sin \omega t^{\prime}}{r^{3} \omega}+\frac{\cos \omega t}{r^{2} v}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{\theta}=\frac{1}{\epsilon} \int\left[\frac{r^{2}}{r^{2}} \operatorname{sig} \theta(-d /(r \sin \theta u q)]+d / d d\left(A_{r}=\right.\right. \\
& \epsilon_{\theta}=-\frac{1}{\epsilon} \int\left[\frac{1}{r} d / \partial r(r+\phi)\right] d t
\end{aligned}
$$

Solving we get (5-6 beeps)

$$
\begin{aligned}
& E_{\theta}=\frac{I_{0} \rho \sin \theta}{4 \pi \epsilon}\left[\frac{\cos \omega t^{\prime}}{r^{2} v}+\frac{\sin \omega t^{\prime}}{\omega r^{3}}-\frac{\omega \sin \omega t^{1}}{v^{2} r}\right] \\
& E_{\phi}=\frac{1}{\epsilon} \int \frac{r \sin \theta}{r^{2} \sin \theta}\left\{\partial / \partial r(r / \theta)-d / \partial \theta_{0}(H r)\right\} \alpha_{0} \\
& E_{\phi}=0
\end{aligned}
$$

Derive electric field and magnetic field compose and explain the significance op different tames in the derived eq.

$$
\begin{aligned}
& H_{\theta}=\frac{\operatorname{cosin} \theta}{4 \pi}\left[\frac{\cos \omega t^{\prime}}{r^{2}}-\frac{\omega \sin \omega t^{\prime}}{v r}\right] \\
& E_{r}=\frac{I 0 l \cos \theta}{2 \pi \epsilon}\left[\frac{\sin \omega t^{\prime}}{r^{3} \omega}+\frac{\cos \omega t^{\prime}}{r^{2} v}\right] \\
& E_{\theta}=\frac{I_{0} \operatorname{lin} \theta}{9 \pi \epsilon}\left[\frac{\sin \omega t^{\prime}}{r^{3} \omega}+\frac{\cos \omega t^{\prime}}{r^{2} v}-\frac{\omega \sin \omega t^{\prime}}{v^{2} \gamma}\right] \\
& \text { The term which varies }
\end{aligned}
$$

\# The term which varies inversely as distance (1/6) is k/a Far field or Radiation field whit accounts for radiation of EM wave,
\# The term which varies inversely as squarecef distance (yy2) is Ka near field or Induction field. This field will predominate at points - Close to current carrying elements where r is small. In distance where r is large the effect becomes negligible compared to radiation
field.
field and exists only af the clove paipheri af coment carging elements:
u*poner Radiated by Abermating current elenene. ane proer radialed byac etement is given by poyoting vector.

$$
\begin{aligned}
& \vec{P}=\vec{\epsilon} \times \vec{H}=\left|\begin{array}{ccc}
\hat{\gamma} & \hat{\theta} & \hat{\phi} \\
E_{r} & E_{\theta} & E_{\phi} \\
H r & H \theta & H \phi
\end{array}\right| \\
& P_{r}=E_{\theta} H_{\phi}-H_{\theta} E_{\phi}^{0} \quad\left[\because n_{\theta}=0, E_{\phi}=0\right] \\
& =\frac{I_{0} l \sin \theta}{4 \pi \epsilon}\left[\frac{\sin \omega t^{\prime}}{r^{2} \omega}+\frac{\cos \omega t^{\prime}}{\gamma^{2} v}-\frac{\omega \sin \omega t^{\prime}}{v^{2} r}\right] \times \\
& \frac{I 0 f \sin \theta}{4 \pi}\left[\frac{\cos \omega t^{\prime}}{\gamma^{2}}-\frac{\omega \sin \omega t^{1}}{V \gamma}\right] \\
& \operatorname{Pr}=\frac{I_{0}^{2} l^{2} \sin ^{2} \theta}{16 \pi^{2} \epsilon}\left[\frac{\cos 2 \omega t^{\prime}}{r^{4} v}-\frac{\omega \sin 2 \omega t^{\prime}}{r^{3} v^{2}}+\frac{\sin 2 \omega t^{\prime}}{2 \omega r^{5}}\right. \\
& P_{\theta}=-E_{r} H_{\phi}+E H_{H} \quad+\frac{\omega^{2}\left(1-\cos 2 \omega t^{1}\right)}{2 r^{2} v^{3}} \\
& =-\frac{I_{0} \ell \cos \theta}{2 \pi \epsilon}\left[\frac{\sin \omega t^{\prime}}{r^{3} \omega}+\frac{\cos \omega t^{\prime}}{r^{2} V}\right] \cdot[\\
& \frac{I_{0} l \sin \theta}{4 \pi}\left[\frac{\cos \omega t^{\prime}}{r^{2}}-\frac{w \sin \omega t^{\prime}}{v \gamma}\right] \\
& P_{\theta}=\frac{I_{0}^{2} l^{2} \sin 2 \theta}{16 \pi^{2} t}\left[\frac{w \sin \omega t^{1}}{2 v^{3} v^{2}}-\frac{\cos 2 \omega t^{1}}{2 \gamma^{4} v}-\frac{\sin 2 \omega t^{1}}{2 w \gamma^{5}}\right] \\
& P \phi=\operatorname{Er\phi } \hat{F}^{\circ}-E \theta \operatorname{Hf}^{\circ} \\
& P \phi=0
\end{aligned}
$$

80524 ris ange power controbufed by $\sin 24$ e Bower, is

$$
\frac{I a^{2} \rho^{2} \sin ^{2} \theta}{16 \pi^{2} \theta}\left[\frac{\omega^{2}}{2 r^{2} v^{3}}\right] \text { cef } p_{r}
$$

\therefore we get

$$
P_{r}=\frac{I_{0}^{2} l^{2} \sin ^{2} \theta}{16 \pi^{2} \epsilon} \frac{w^{2}}{2 r^{2} v^{3}}
$$

$$
P Q=0
$$

$$
P \phi=0
$$

\# Thus. The avg powen is only in rdirection

$$
\begin{aligned}
& \therefore P_{\text {avg }}=\left(\frac{I_{0 l} \sin \theta w}{4 \pi \gamma V}\right)^{2} \cdot \frac{1}{2 \in V} \\
& \text { For Free snace }
\end{aligned}
$$

\# For Free space $\mathrm{c}_{\mathrm{e}}=$ eco \& $v=v_{0}$
\# Total pose radiated can be obtained by integrating arerage powen.

$$
\begin{aligned}
& \text { Protal }=\oint \text { Pravg } \cdot d a \\
& =\int_{0}^{\pi} \frac{n_{0}}{2}\left(\frac{x_{0} 1 \sin \theta \omega}{4 \pi r v}\right)^{2} 2 \pi r^{2} \sin \theta d \theta \\
& =\frac{20}{Z} 2 \pi r^{2}\left(\frac{I_{0} \rho \omega}{4 \pi r v}\right)^{2} \int_{j}^{\pi} \sin ^{3} \theta d \theta \\
& \begin{aligned}
P_{\text {tatat }} & =\frac{20 w^{2} I_{0}^{2} \rho^{2}}{12 \pi V^{2}} \\
& =\quad 2 \pi
\end{aligned} \\
& d_{0}=2 \pi r \sin \theta \cdot r d l \\
& =2 \pi r^{2} \sin \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { Again }\left(\omega_{k}\right)^{2}=\left(\frac{2 \pi f}{A f}\right)^{2}=\frac{4 \pi^{2}}{\lambda^{2}} \quad \text { of } 20=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=120 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{0} v_{0}=\epsilon_{0} \frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=\sqrt{\frac{\epsilon_{0}}{\mu_{0}}}=1 / n_{0} \quad n_{0}=\text { Intinsic } \begin{array}{c}
\text { anpedan } \\
\mu_{0}
\end{array} \\
& \therefore \operatorname{Pavg}=\frac{20}{2}\left(\frac{I_{0 l} \sin \theta \omega}{4 \pi \gamma v}\right)^{2} w a t t / m 2
\end{aligned}
$$

In terms of effective or rms value.

$$
\begin{aligned}
& =I_{0}=I_{e f f} \sqrt{2} \\
& \text { Protal }=\frac{80 n^{2} p^{2}}{d^{2}}\left(I_{e f f}\right)^{2} \\
& \left.\quad: \quad I_{f f f}\right)^{2} \cdot R_{\text {rad }}=\frac{80 \pi^{2} p^{2}}{A^{2}}\left(I_{C f f}\right)^{2} \\
& \therefore \text { Read }=\frac{80 \pi^{2} p^{2}}{d^{2}}
\end{aligned}
$$

where Rad is Radiation Resistance.
It is defined as the fictions resistance when when inserted in series with antenna will consume same amount of power as is actually radiated.

3 Dipole $<t / 50$ infinitesimal dipole (Hertzianded
$\therefore d / 50$ to dib small dipole
>110 large dipole.

* Input Fropedance of Long Antenna/Long dip

2010 Fal
Q Derive the Exp for power radiated by half wave dipole.

fig: center fed dipole with sinusoidal currentdistribution.
\#Long Antenna is the antenna which

$$
\text { i) has length }>\text { i/10 }
$$

ii) carries cement distribution as

$$
I= \begin{cases}I_{0} \sin \beta(H-z) & \text { for } z>0 \\ I_{0} \sin \beta(H+Z) & \text { for } z<0\end{cases}
$$

where, $H=$: half of length of antenna $2=$ point on antenna wot which effect is considered

$$
B=\text { phase constant }=\frac{2 \pi}{n}
$$

$$
\begin{aligned}
& A_{2}=\int \frac{\mu I \cos \omega t^{\prime}}{4 \pi R} d z \\
& \text { Mere w } t^{\prime}=2 \pi f t^{\prime}=-2 \pi V t^{\prime}=\beta R \quad\left[\begin{array}{l}
\because \Omega V A \\
V \times t=R
\end{array}\right]
\end{aligned}
$$

with assumption that we take only real pats of $e^{-j B R}$ we have,

$$
A_{z}=\oint \frac{\mu I e^{-j \dot{B} R}}{4 T R} d z
$$

* Total vector potential at P due to all current element

$$
\begin{aligned}
A_{2} & =\frac{\mu}{4 \pi}\left[\int_{-H}^{0} \frac{I e^{-j \beta R}}{R} d z+\int_{0}^{H} \frac{I e^{-j \beta R}}{R} d z\right] \\
& =\frac{\mu}{4 \pi} \int_{-n}^{0} \frac{I_{0} \sin \beta(H+2) e^{-j \beta R}}{R} d z+\int_{0}^{H} \frac{I_{0} \sin \beta\left(n-z e^{-j \beta \theta}\right.}{R} d
\end{aligned}
$$

\# Since P is at larger distance we can assume $R \approx r$ in case of denominator
But in case af R in the phase factor lines $R \& r$ will be essential

$$
\therefore R=\gamma-z \cos \theta
$$

\# So we will have

$$
\begin{aligned}
& A_{2}= \frac{\mu I_{0}}{4 \pi \gamma}\left[\int_{-n}^{0} \sin \beta(n+2) e^{-j \beta(\gamma-z \cos \theta)}{ }_{d i}+\begin{array}{l}
2 \cos \theta \\
\therefore r=\beta+z \cos \theta
\end{array}\right. \\
&\left.\int_{0}^{n} \sin \beta(n-z) \cdot e^{-j \beta(r-z \cos \theta) d z}\right] \\
&= \frac{\mu I_{0} e^{-j \beta r}}{4 \pi \gamma}\left[\int _ { - n } ^ { 0 } \left(\sin \beta(n+z) \cdot e^{j \beta z \cos \theta} d z+\right.\right. \\
&\left.\int_{0}^{4} \sin \beta(n-z) e^{j \beta z \cos \theta} d z\right]
\end{aligned}
$$

Thor A/2 Antenna, (hatpuave asama)

$$
\begin{aligned}
& L=2 n=r / 2 \\
& \therefore H=d / q u \\
& \sin B(n+2)=\sin \frac{2 \pi}{\lambda}(1 / 4+2)=\sin (\pi / 2+\beta 2)=\cos \\
& \sin \beta(n-z)=\cos \beta 2 \\
& \therefore A_{2}=\frac{\Delta I_{0} e^{-j \beta \gamma}}{4 \pi \gamma}\left[\int_{-n}^{0} \cos \beta 2 e^{j \beta 2 \cos \theta} d 2+\int_{0}^{\gamma} \cos \beta 2 e^{j \beta 2 \sin } d\right.
\end{aligned}
$$

Similarly

On Solving, (g steps)

$$
A_{2}=\frac{\mu I_{0} e^{-j \beta \gamma}}{2 \pi \gamma \beta}\left[\frac{\cos (\pi / 2 \cos \theta)}{\sin ^{2} \theta}\right]
$$

we know that radiateal posen is sonly in H direction using maxevell's equation

$$
\begin{aligned}
& H \phi=\frac{1}{\mu}\left[-\frac{d}{d r}\left(A_{2} \sin \theta\right] \quad\left[\because H \phi=\frac{1}{\mu}\left[1 / \frac{\partial}{\partial} / \partial r\left(A_{\theta}\right.\right.\right.\right. \\
& \begin{array}{l}
=\frac{1}{d e}\left(\frac{-\mu I_{0}}{2 \pi \beta}\right)\left[\frac{[0 S(\pi / 2 \cos \theta)}{\sin \theta}\right] \operatorname{drr}\left(\frac{e^{-j \beta r}}{\gamma}\right) \\
=-I_{0}
\end{array} \\
& =-\frac{I_{0}}{2 \pi \beta}\left[\frac{\cos (\pi / 2 \cos \theta)}{\sin \theta}\right] \frac{\operatorname{si\beta r}(-j \beta)}{r\left(-\beta^{\prime}\right)} \\
& H_{\phi}=\frac{j I_{0} e^{-j \beta r}}{2 \pi r}\left[\frac{\cos \left(\pi y_{2} \cos \theta\right)}{\sin \theta}\right]
\end{aligned}
$$

Nous,

$$
\begin{aligned}
E_{0} & =1+1 \\
\therefore E_{0} & =\frac{j n I_{0} e^{-j B r}}{2 \pi r}\left[\frac{-\cos (\pi / 2 \cos \theta)}{\sin \theta}\right]
\end{aligned}
$$

$$
|E 0|_{p e a r}=\frac{n I_{0}}{2 \pi r}\left[\frac{\cos (\pi / 2 \cos \theta)}{\sin \theta}\right]
$$

* Peak value of pointing vector is the product of peak values of E_{θ} fid

$$
P_{p e a r}=\left|\epsilon_{e}\right|\left|H_{Q}\right|
$$

* Thus avg value of pones

$$
\begin{aligned}
\operatorname{Pavg}=\frac{\left|E_{0}\right|}{\sqrt{2}} \cdot \frac{\left|H_{\phi}\right|}{\sqrt{2}} & \left.=\frac{1}{2}\left|E_{\theta}\right| \| H_{\phi} \right\rvert\, \\
& =\frac{1}{2} \frac{\eta I_{0}^{2}}{4 \pi^{2} \gamma^{2}}\left[\frac{\cos (\pi / 2 \cos \theta)}{\sin \theta}\right] \\
& =\frac{2 I_{0}^{2}}{8 \pi^{2} \dot{\gamma}^{2}}\left[\frac{\cos (\pi / 2 \cos \theta)}{\sin \theta}\right]^{2}
\end{aligned}
$$

\# Total power racliated is

$$
\begin{aligned}
P_{\text {total }} & =\oint \text { Pang da } \\
& =\frac{2 I_{0}^{2}}{8 \pi^{2} x^{2}} \int_{0}^{\pi} \frac{\cos ^{2}(\pi / 2 \cos \theta)}{\sin ^{2} \theta} 2 \pi \gamma^{2} \sin \theta d \theta \\
& =\frac{n I_{0}^{2}}{4 \pi} \int_{0}^{\pi} \frac{\cos ^{2}(\pi / 2 \cos \theta)}{\sin \theta} d \theta \\
& =\frac{2 I_{0}^{2}}{4 \pi} \times 1.219
\end{aligned}
$$

Here $\eta=120 \pi \quad \& \quad I_{0}=\sqrt{2}$ Jeff

$$
\begin{array}{ll}
\therefore \text { protal }=60 I_{\text {eff }}^{2} \times 1.219 \quad & \therefore \text { total }=73.14 I_{\text {eff }}^{2} \\
\text { Arad } I_{\text {eft }}^{2} & =73.14 I_{\text {eft }}^{2} \\
\text { Read } & =73.14 \Omega
\end{array}
$$

extper tispedane at short antenn

H Sharf Anjenna is the one which
i) has lengh $1 / 50<l<1 / 10$
ii) carries. current distribution as

$$
\begin{aligned}
& I(z)=\operatorname{Io}\left(1-\frac{2121}{L}\right) \\
& \text { Pne distribution is pin }
\end{aligned}
$$

\# The currene distribution is miangular as shown in Eg
\# Far Short Antenna, Iffe Iegf/2 as that for In finilesmal small antenna.

$$
\begin{aligned}
& P_{\text {toral }}=\frac{80 \pi^{2} f^{2}}{N^{2}} \cdot(\text { Feff })^{2} \text { for in fintesimat a lemi } \\
& =\frac{80 \pi^{2} f^{2}}{\lambda^{2}}\left(\frac{\text { Ieff }}{2}\right)^{2} \\
& \text { Protal }=\frac{20 \pi^{2} f^{2}}{N^{2}}\left(I_{\text {Lf } f}\right)^{2} \\
& \therefore \text { Rrad }=\frac{20 \pi^{2} p^{2}}{\pi^{2}}
\end{aligned}
$$

H The radiation field from the transmitting antenna is characterized by the complex poyn hing Hector Ex Hm in which E is the electric field and h is magnetic field * close to the antenna the povnhig vector is imaginary creactives and E, t decays more rapidly than 1 fr whereas further away it is real (radiating) of E.H decays as $1 / r$.

* Based on these characteristics of porting we cam identify three major regions as show in fig g
 rear 1 ? Pied, Field field, (Fresnel zone); (Frauhoferzo

(1) Reactive Field
* This is the region in spare immediately surrounding antenna.
\# This region extends from $0<r<\lambda / 2 \pi$
\# In this space the Poynting vector is predominant reactive (non radiating) [mas all three component. in spherical coordinates $(r, \theta, \phi)]$ decays mare rapidly than $1 / r$.

* After the reactive field radiating field begins ta dominate
*This region extends from $-1 / 2 \pi<r<20^{2} / d$ where
D is largest dimension of the antenna.
\# This region is often referred to as Fresnel l 20 m
* This region is divided into two subregions.
i) For $1 / 2 \pi<r<D^{2} / 4 \pi \Rightarrow$ The Field decay mare rapier than $1 / r$ \& radiation pattern is dependent ont
ii) For $D^{2} / 4,4<r<\frac{2 p}{d} \Rightarrow$ the field decay as $1 / 2$ bu radiation putter is dependent on r
(3) Radiating Far Field
\# Beyond the radiating near field ie $r>2 D^{2} / I$ the poynting vector is real Cony radiating field
* The field decay as $1 / r$ and the radiation pattern is independent of r.
* This region is often referred as Fraunhofana
* In phase \& Quadrature Phase Terms:
\# guadrahre terms 90° phase diff

(i)Superpostion Theorem

H In a now coif geverabures e impeciances, the current flowing at any, point is the sun af currents that would flow if ear genequors were considered separately, we the other generators being replaced of the throne by mpedances equal to their internal iropedarace.
(9) Mavens Theodore

\# In a now consisting of one or more generator of impedances, the current flowing through cad impedance $z e$ is same as obtained by replacing original network across 2 was angle volligige source Voc (openckt voltage) and impedance zeq in series where voc is open cot voltage measured across $Z R$ $z e q$ is jropedancemeasured at same open terminal looking back into the n/w replacing all the energy source by their respective internal impedance.

(3) May Power Trarisfen Theorem

\# In any network, the maze m power is transferred do the Load 2_{R} by the generator if the Load imp pedant $Z R$ is coroplex conjugate af the equivalent iospedane of the now zeq measured looking back into the: now from the $2 R$ terminal.
\# The max m power transferred is

If \quad req $=R+g x$
$Z_{R}=R-j x$

$$
\operatorname{Prax}=\frac{\sqrt{0} c^{2}}{4 R}
$$

$V o c=o p e n c k t$ voltage Fiamload Terminal $R=$ Resistive comport of eq Impeding
 seen from load terminal.
(1) Compensation Theorem

Any impedance in a n / u may bee replaced by a generat of zero internat impedance such that generated voltage at every instant is equal to instantaneous P.D that existed across the impedance because co current flowing through it.
(5) Reciprocity Theorem
\Rightarrow This theorem establish and receiving Antenna. ie same antenna cup Transmit as transmitfes a receives antenna (egkapale antenna)
\# Reciprocity Theorems states that I f an Emp is applied to the terminal of antenna l and current measured ct terminal a antenna B then an equal current both in amplitude and phase will be obtained at terminal of antenna A if s arse emf is applied to terminal of antenna B

fig (a)
The ea If iowan be drawn as.

fig (c) eq in lw of fig a

Andennafi Antenna b $\operatorname{sig}(6)$

萻
$\% z_{10}$ d z_{2} are self impedance of Antenna f \& Q and 2 is mutual iropedane beth no antenna

$$
\begin{aligned}
& I_{2} z_{22}+Z_{m}\left(I_{2}-I_{1}\right)=0 \\
& I_{2}\left(z_{m}+z_{22}\right)=Z_{m} I_{1}
\end{aligned}
$$

$$
=-\quad-I_{2}=\left(\frac{\sum_{2}}{E_{0}+Z_{22}}\right) I_{1}=\therefore(1)=
$$

From loop 1
\# From fig e

$$
I_{1}=I_{1}\left(\frac{z_{3}}{z_{2}+z_{3}}\right)
$$

-(1) From current division
where

$$
\begin{equation*}
I_{1}=\frac{v_{a}}{z_{1}+\left[z_{2} z_{3} /\left(z_{2}+z_{3}\right)\right]}=\frac{v_{a}\left(z_{2}+z_{3}\right)}{z_{1} z_{2}+z_{1} z_{3}+z_{2}} \tag{2}
\end{equation*}
$$

From (1) \& (2)

$$
\begin{equation*}
I_{b}=\frac{V_{a} z_{3}}{z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}} \tag{3}
\end{equation*}
$$

Similarly from n / w of fig d.

$$
\begin{equation*}
I_{a}=\frac{v_{b} z_{3}}{z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}} \tag{4}
\end{equation*}
$$

comparing (3) \& (4)
If $V_{a}=V_{b}$ then $I_{a}=I_{b}$ which proves reciprocity theorem.
whatcaton as wh Thenen to antena
(1) Equatlity ef Diectional Pattern
\rightarrow The directional pattern of receiving antenn is dentical with the dorectional pattern cor a batignithon antering.
(9) Equivatence of Transmitring and Receiving Antenna
Irmpedances.
B. equivalence ap effective cengths

AnTENNA

* The measure of a solid angle is steradian Since the area of a sphere of radius y is $4 \pi r^{2}$ There are $4 x$ steredian in a closed sphere.

F Radiate Power Density

* It is the radiation power per unit area ($\omega / / 4$)
* The quantity used to describe the power associated with EM wave is poynting vector which gives the. power density

$$
\vec{p}=\vec{E} \times \overrightarrow{1}
$$

W Radiation Intensity

* Radiation In tensity is defined as the power radiated from antenna pen unit solid angle.
\# It is denoted by U and mathematically,

$$
\begin{aligned}
& \text { enoted by } U \text { and mathematically, } \\
& U=\gamma^{2} \cdot p \\
& \quad\left(u=\frac{w}{4 \pi}, \quad p=\frac{w}{4 \pi r^{2}}, w=p \cdot 4 \pi r^{2}\right.
\end{aligned}
$$

where $P=$ power density for isotropic.

* Isotropic Radiator
\# An isotropic radiator is an ideal sou re that radiate. equally in all direction
\# Although it doesn't exists in practice, it provides a convini isotropic reference with which to compare all antennas.
\# Total power radiated.

$$
w=\beta \oint \vec{P} \cdot d S=4 \pi r^{2} P_{\sigma}
$$

\&power density is $P \sigma=\frac{W}{4 \pi \sigma^{2}}$
\therefore Radiation intensity of isotropic radigitat

$$
U_{0}=\gamma^{2} \cdot P_{0}=\frac{W}{4 \pi}
$$

th Directivity is the ability ofanantenna to focus energy ir a particular direction.
til the practical antennas concentrate their radiate energy in particular direction:
\# The degree to which a practical antenna concent the radiated energy relative to that op isotropic antenna is termed as directivity.
H mathematically Directibity is the ratio ap maxi radiation intensity of an antenna to the radiation intensity of isotropic antenna.

$$
\begin{aligned}
& D=\frac{U \operatorname{Dan}}{U_{0}} \\
& D=\frac{\mu \pi U \operatorname{maq}}{\omega}
\end{aligned}
$$

H Directiviny is the max directive gain of an antenna

tontenna Gain
\# The hypothetical isotropic antenna radiates equally in all direction. Any real antenna will radiate more energy in some directions than in others
H The gain of an antenna in a given direction is the amon of energy radiated in that direction compared to the energy an isotropic antenna would radiate in the Same direction. when driven with same input power
2003
Directive Gain
H Directive gairmay be defined as the ratio af radiation intensify in a given direction firm an antenna an antemat to the radiahon intensity af isotropic antenna.

$$
C_{a}=\frac{U_{d}}{U_{d}}=\frac{\frac{1 \pi}{w}}{\omega} \quad \because \operatorname{ch}_{0}=\frac{h}{4 \pi}
$$

in io x directive gar of an antenna is its directive
of a test antenna to the radiated power density of an isotropic antenna with same input powesto both

$$
G_{p}=\frac{P}{P_{0}}
$$

Also $\quad=-10-\quad=\quad$ efficiency of aroma

$c_{p}=$ Power gan
ad = Directive gain
W力 Antenna Effachay (Radiation bforency)

* The efficiency af an antenna relates the pow en dotivere to the antenna and the pow or radiated from antenna \# It is a parameter which indicates cosses af the input terminal and within the str of an arstema.
\# The losses associated with antenna are

1) Reflection because of mismatch beth πx cine and antenna.
2) $I^{2} R$ losses (which is due to conduction \& dieter
$\pm \eta=\frac{\text { Pradiated }}{\text { Pinput }}$
$\eta=$ nr $\eta_{c d}$ where $\eta=$ overall efficiency
$\eta_{r}=$ reflection mismatch η

$$
\eta_{r}=\left(1-|r|^{2}\right)
$$

where

$$
\Gamma=\text { voltage reflection coif }
$$

$$
\Gamma=\frac{\operatorname{zin}-20}{\operatorname{zin}+20}
$$

Lin $=$ Antenna i / p impedance
$z_{0}=$ characteristics impedance of transmission line
$2 \mathrm{~cd}=$ conduction dielectox. efficiency

$$
R_{c d}=\frac{R_{r}}{R_{r}+R_{L}}
$$

where

$$
\begin{aligned}
& R_{r}=\text { Radiation resistant } \\
& R_{l}=\text { LoSs }
\end{aligned}
$$

For numerical

$$
n=\frac{\text { Pradiared }}{P \text { input }}=\frac{J^{2} R_{r}}{J^{2}\left(R_{r}+R_{c}\right)}=\frac{R_{r}}{R_{r}+R_{L}}
$$

gain 20 \& directivity 22 calculaterjs tadiatonesi SuI

Loss resistance $(Q)=10 \mathrm{~N}$
Directivity $($ ad $)=22$
Power gain $(a p)=20$
Radiation Resistance $\left(R_{r}\right)=$?
we have

$$
\begin{aligned}
& G p=2 G 0 \\
& 20=222 \\
& \therefore n=0.9091
\end{aligned}
$$

$$
\begin{aligned}
& A 150 n=\frac{R r}{R r+R C} \\
& 0.9091=\frac{R r}{R r+10} \\
& R_{r}(1-0.9091)=10 \\
& \therefore R_{r}=100.0110 \Omega
\end{aligned}
$$

Q Any Antenna has a radiation resistance af 72Ω, Loss resistance of 8Ω a power gain af 12 dB .

Sol

$$
\begin{aligned}
& R_{r}=72 \Omega \\
& R_{L}=8 \Omega
\end{aligned}
$$

power gain $(G P)=12$ dB

$$
\begin{aligned}
\text { Efficiency }(2) & =\frac{R_{r}}{R_{r}+R_{L}}=\frac{72}{72+8} \\
\therefore \eta & =0-9
\end{aligned}
$$

we nave

$$
\begin{aligned}
& G_{p}=2 G_{D} \\
& G_{D}=\frac{G P}{2}=\frac{12}{09}=13.3333
\end{aligned}
$$

som.

$$
R_{L}=15 \mathrm{~m}
$$

since dipole is $1 / 10$ it is short antenna For short antenna,

$$
\begin{aligned}
R_{r} & =\frac{20 \pi^{2} r^{2}}{d^{2}} \\
& =\frac{20 \pi^{2}\left(d_{15}\right)^{2}}{d^{2}} \\
& =0.8764 \\
n & =\frac{R_{r}}{R_{r}+R_{L}}=\frac{0.8764}{15+0.8764}=0.055 \\
\eta & =5.5 \%
\end{aligned}
$$

vaumaratesistance
\# Radiation Resistance is defined as the factious resistance which when inserted in series with anted will consume same amount of power as is actual radiated

*For Infinitesimal short antenna

$$
\operatorname{Rrad}=\frac{80 \pi^{2} e^{2}}{\pi^{2}}
$$

For short antenna, brad $=\frac{20 \pi^{2} \ell^{2}}{r^{2}}$
For Long antenna, Brad $=78 \cdot 14 \Omega$
\# Actually Antenna will have measured brae resistance as.

$$
R_{t}=R_{r}+R_{\rho}
$$

$R t=$ Total Antenna residano
$R_{r}=$ Radiation resistance
$R_{l}=$ ohmic resistance
\# Since ohmic resistance gives rise to poser lars. For efficient radiation purpose, the radiation resistance must be very much higher than ohmi resistance.
F Bandwidth
\# The Bandwidth of an antenna refers to the range of frequencies over which the antenna can operate. correctly.
$000 \frac{9}{8}$
Antenna Beam width
\#. The Beamwidit is a measure of directivity of an antenna. The antenna beamwith is defined as the angular separation between ho half pow en

- Points on radiation pattern af an antenna
\# Also kia half power Beam width or 3 ab Beamwidth
* Thus beamwidth is angular separation been two B dB points.

\# The beamwidtr: af antenna is a very important factor of it is aftenvsed wa trade off between Bearswioth and side labe level. if As bear width trereases side lo he increase n and vice versa.
$\sqrt{6 \pi}$
* RADIATION PATTERN
\# The radiation pattern of an antema is a graphical representation of the radiation of the antenna as a function of direction.
\# The radiation pattern may be the field strength pattern or power pattern. When the radiation pattern is expressed as Field strength E, the radiation pattern is expressed as field strength pattern and when it is expressed in terms of powen per unit solid angle the resulting pattern is powen pattern.
\# ties radiation pattern of different types of antenna is shown in fry.
$\left(\begin{array}{l}\text { radiation } \\ \text { pattern in } \\ \text { Spherical region }\end{array}\right.$
(a) Isotron pic Antenna
G Radiates uniformly in all direction

radiation pattern can be protect in the different ways
(1) Polar plot

Here angle θ \& magnitude of posen in radius are plotted

(2) Linear plot

In linear plot, the angle is plotted in one of the axis and magnitude of power in another.

2007 prove directivity of current element is $1.76 \mathrm{~dB} /(1 / 5)$ Consider a current element of Lengint. Taking the magntude of maxm vatue, af distank electic trêd in the direction of maxion radiation, we have

$$
\begin{aligned}
& E=\frac{T \rho v}{4 \pi \in r v^{2}} \\
& =\frac{I P \omega}{4 \pi \gamma \varphi} \times \eta \quad \because \eta=\frac{1}{\epsilon \theta}=\text { Intinsic ompedan }
\end{aligned}
$$

$$
\begin{align*}
& E=\frac{60 \pi I}{\gamma} \cdot(l / d) \tag{1}
\end{align*}
$$

we have,
radiated power, wrad $=I^{2}$ Rrad $\Rightarrow I=\sqrt{\frac{\text { hrad }_{\text {rad }}}{\text { Rrad }}}$ Let radiated power be I watt

$$
\begin{align*}
& I=\frac{1}{\sqrt{\text { Rrad }}} \text { \& For corrent etomend Rrad }=\frac{80 \pi^{2} e^{2}}{\lambda^{2}} \\
& \therefore I=\frac{1}{\sqrt{80} \pi \cdot(l / d)}
\end{align*}
$$

From (1) \& (2)

$$
E=\frac{60 \not \gamma(1 / d)}{\gamma} \frac{1}{\sqrt{80} / T(/ / C)}=\frac{60}{\gamma \sqrt{80}}
$$

Now, maxn Radiation Intensity is given by

$$
\begin{aligned}
U_{\text {max }}=\gamma^{2} \cdot p & =\frac{\gamma^{2} \cdot \frac{E^{2}}{\eta} \quad\left[\because p=E \times \eta=E \times \frac{E}{2}\right.}{} \quad=\gamma^{2} \cdot\left(\frac{60}{\gamma \sqrt{80}}\right)^{2} \cdot \frac{1}{120} \pi \\
U_{\text {max }} & =\frac{3}{8 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& B=\frac{4 \pi \text { Umaxe }}{\text { Wrad }}=4 \pi \frac{\times 3}{8 \pi} \\
& \therefore \text { Directivity }=1.5 \\
& \quad 10 \mathrm{log} 1.5=176 \mathrm{~dB} \\
& \quad \begin{array}{l}
\text { Diretivity }=1: 76 \mathrm{~dB}
\end{array}
\end{aligned}
$$

WDrectivity cf Half wave Diphe
20 Show Directivisy of that wave Dipole is 2.16 de:
For Half wave Dipole, Electric field in maxmetin is

$$
E=\frac{2 I}{2 \pi r}=\frac{60 I}{r} \quad \eta=120 \pi
$$

Let radiated power be I watt.

$$
\begin{aligned}
& \text { Trad }^{2}=I^{2} \text { Rad } \\
& \therefore I=\frac{1}{\sqrt{\text { Rad }}}=\frac{1}{\sqrt{73}} \\
& \therefore E=\frac{60}{\sqrt{738}}
\end{aligned}
$$

\because for half wave dipne $\operatorname{Rrad}=73 \Omega$

Next
max m radiation intensity is given by

$$
\begin{aligned}
& U_{\text {max }}=\gamma^{2} \cdot p=\gamma^{2} \frac{E^{2}}{2}=\gamma^{2} \cdot\left(\frac{60}{\sqrt{73} \gamma}\right)^{2} \cdot \frac{1}{120 \pi} \\
& \therefore U_{\max }=0.131
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { Directivity }=\frac{4 \pi U_{\text {mat! }}}{\text { Wrad }}=4 \pi \times 0.131=1.646 \\
& \therefore \text { Directivity }=10 \log 1.646 \\
& \quad \text { Directivity }=2.16 \mathrm{~dB}
\end{aligned}
$$

the effective length of an ing'v'to the incident field' e^{\prime}
the ratio of induced voltage' v ' to the incident field' E

$$
h_{\text {hp }}=\frac{V}{E}(m)
$$

4 Epfeave height indicates bow much of the antenna is involved in radiating (or receiving).
\# It is defined as the length of antenna with a unifor. and in phase current distribution along its entivelerg.

neignolft $\mathrm{c} / 2$

$$
\text { heff }=0.64 \mathrm{~h}
$$

height $(13)=d / 10$

$$
n \in f_{f}=0.5!
$$

* The effective length of an antenna is also given by the integral of normalized (avg) current distribution over the length of antenna

$$
\begin{aligned}
& h_{\text {eff }}=\frac{1}{I_{0}} \int_{0}^{h_{0}} I(z) d z \\
& h_{\text {eff }}=\frac{I_{\text {avg }}}{I_{0}} h_{p}
\end{aligned}
$$

$h_{p}=$ physical height
heft = effective
$I_{\text {avg }}=$ avg current
Io $=$ peat antenna current.

- For an antenna of radiation resistance R_{γ}, the pow en delivered to load is equal to

$$
\begin{equation*}
W=\frac{V^{2}}{4 R_{r}}=\frac{n_{e^{2}} E^{2}}{4 R_{r}}(\text { watt }) \tag{1}
\end{equation*}
$$

* In terms of effective aperture same powen is given by

$$
\begin{array}{ll}
w=p \cdot A e & {[\because A e=w / p] \quad p=\text { poynting veciorcolinide }} \\
w=\frac{E^{2}}{2} A e & {\left[\because p=\epsilon^{2} / n\right]-2}
\end{array}
$$

From (1) 8 (2)

$$
\begin{aligned}
& \frac{h e^{2} E^{2}}{4 R_{r}}=\frac{t^{2}}{2} A e \\
& \therefore h e=2 \sqrt{\frac{R_{r} A e}{2}} \cdot(m) \quad \text { \& } A e=\frac{h e^{2} \eta}{4 R_{r}}
\end{aligned}
$$

~ Effective Area of an shauna (effectmeaper 2009 - 2 ermerata

F A150 ka effective aperture or capture area

* A Transmuting antenna transmits Em energy in space \& receiving antenna receives a fraction this em energy.
* The of fective area of an anten ra can be def as the ratio ap power received at the antenna load terminal to the pointing vector (or pow density) in watt $/ h_{0}{ }^{2}$ of incident wave
\therefore Epferve Area $=\frac{\text { Pow en Received }}{\text { Poynhing vector of incident w }}$

$$
\begin{equation*}
\therefore A e=\frac{W}{P} \tag{1}
\end{equation*}
$$

\# consider a dipole receiving antenna situated in a field of an EM waves as shown in figa.

fig(a) Diponeanterno terminated with impedance Z_{T}
\# The voltage v is induced by passing em wave a produces

fig (b) Eq circuit with antenna replaced by Theremins geneaty ravin eq voltage \& interact antenna impedance z_{s} current I, through Terminating impedance
$=\#$ From fig (0)

$$
I=\frac{V}{Z_{A}+Z_{t}} \text { (1) where } V d I \text { are efferine }
$$ or rm's values.

\# In general Terminating \& Antenna impedance are complex.

$$
\begin{aligned}
\therefore Z_{T} & =R_{T}+j X_{T} \\
Z_{A} & =R_{A}+j X_{A}
\end{aligned}
$$

* Antenna resistance may be divided as radiation vesistruce Rr \& non radiative or coss resistance R_{L}

$$
\therefore R_{A}=R_{\gamma}+R_{L}
$$

$$
\sqrt{\left(R_{r}+R_{L}+R_{T}\right)^{2}+\left(x_{A}+x_{T}\right)^{2}}
$$

From (1)
Ae $=\frac{W}{P}$ when e w is power recess ed iepnow delivers byantera to terminating irapedane

$$
W=I^{2} R_{T}=\frac{V^{2} R_{T}}{\left(R_{Y}+R_{L}+R_{T}\right)^{2}+\left(x_{1}+x_{T}\right)^{2}}
$$

Thus

$$
A e=\frac{V^{2} R_{T}}{P\left(R_{r}+R_{L}+R_{T}\right)^{2}+\left(x_{1}+x_{T}\right)^{2}}
$$

For max ${ }^{m}$ power transfer

$$
\begin{aligned}
& x_{T}=-x_{A} \& \\
& R_{T}=R_{r}+R_{L}
\end{aligned}
$$

Then ε fopernve Area

$$
A e=\frac{V^{2}\left(R_{r}+R_{L}\right)}{4 P\left(R_{r}+R_{L}\right)^{2}}
$$

If antenna is coseless then

$$
\begin{aligned}
& f \text { antenna is coseless then } \\
& A e_{m}=\frac{v^{2}}{4 P R_{r}}=\frac{E^{2} h_{e f f}^{2}}{4 E^{2} / R 2 r}=\frac{h_{e \rho f}^{2} n}{4 R r}
\end{aligned}
$$

$$
\because v=E \cdot h_{1} .
$$

Aem represents the area overwhich power is extracted from incident wave and delivered to load.
*ferine Area of short Dipole
2005 show the the roar effective area of any antenna is

$$
\frac{1.5}{4 \pi} d^{2}
$$

The max effective aperture of an antenna is.

$$
A_{e m}=\frac{v^{2}}{4 P R_{r}}
$$

and $V=E L, p=\epsilon^{2} / n, \quad \because \quad$ length $L=\frac{V}{\epsilon}$:

$$
\begin{aligned}
& \therefore \text { Aet }=\frac{E^{2} L^{2}}{\frac{4 E^{2}}{2} \cdot \frac{80 \pi^{2} L^{2}}{r^{2}}} \\
& \because \text { For short dipole } \\
& R_{r}=\frac{80 \pi^{2} L^{2}}{r^{2}} \\
& =\frac{120 \pi}{320 \pi^{2}} n^{2} \quad \because \eta=120 \pi \\
& =\frac{3}{8 \pi} \pi^{2} A A m-15 \cdot \frac{\pi^{2}}{4 \pi}
\end{aligned}
$$

For half wave dipole.

$$
\begin{aligned}
V & =\frac{E A}{T} \\
R_{r} & =73 \Omega \quad, P=e^{2} / n \\
\therefore A_{\text {em }} & =\frac{V^{2}}{4 P P_{r}} \\
& =\frac{E^{2} r^{2}}{\pi 2} 4 E^{2} / 2 \cdot 73 \\
& =\frac{120 \pi}{4 \pi^{2} E^{2} \cdot e^{2} d^{2}} \\
\text { ARm } & =0.13 \pi^{2}
\end{aligned}
$$

* Relation between (Divetrivig) antenna
qu 0 1 Denver rein beth gain \& effective area.
F If the electric field in the
Aperture Ae be Eq then
the power radiated is

$$
\begin{equation*}
\text { Pradiated }=\frac{|E q|^{2}}{2} A_{e} \text { (watts) } \tag{1}
\end{equation*}
$$

\#This can also be expressed in terms of received electric field Er within the Asomblid angle of antenna Ω_{A} at distant

$$
\begin{equation*}
\text { Pradiated }=\frac{\left|E_{n}\right|^{2}}{n} r^{2} \sqrt{2}^{(w a t t s)} \tag{2}
\end{equation*}
$$

$1 \begin{aligned} & 10 \\ & \text { From } \\ & \text { (1) }\end{aligned}$ \& (0

$$
\begin{equation*}
\operatorname{Pradiated}=\frac{\left|E_{\Delta}\right|^{2}}{2}=\frac{|E r|^{2}}{2} r^{2} \Omega_{A} \tag{3}
\end{equation*}
$$

H Fr a constant field in the apethre, the rein be i^{n} aperture field of field with on beam area is given ty

$$
\begin{equation*}
=-|E r|=\frac{|E a| A e}{r d} \quad(\text { volrs/iselen } 2) \tag{9}
\end{equation*}
$$

$$
\text { Fradiated }=\frac{\mid E \Delta T^{2} A e^{-}}{n}=\frac{|E a|^{\theta} A e^{q} \cdot r^{2} \Omega_{A} \Rightarrow \Omega_{A}=\frac{d^{2}}{A_{A}}}{\pi^{2} d^{2} x}
$$

$$
\text { Directivity }=\frac{4 \Omega}{n_{A}}
$$

$$
\therefore D=\frac{4 \pi A \operatorname{en}}{\lambda^{2}}
$$

Aem is max effenverperto

Atso gain=KD. Where x is constano

$$
G=\frac{4 \pi}{R^{2}} A e: \quad n=\frac{A e}{A e m}
$$

F Standing wave antennas have standing wave of current a voltage on them
Hin a transmitting Antenna of this type a progressist on travelling wave is supplied from the power source. wave reaches the open end due to impatience mismatch th frequent change it is reflected.
It The combination af the hoo waves sets up stand wave Eg half wave dipole Antenna

* Travelling Wave Stoma
\# Travelling wave Antennas hoo no Standing laves.
\# This is accomplished by terminating the antenna wi its cmacterishces impelare so that mo reflections occurs
* Eg. wee antennas, Rhombic antennas

wee antenna

- Increaze in af radiation pattern
(a)
(b) $\left[\begin{array}{c}\ddots \\ \vdots \\ \vdots \\ \vdots\end{array}\right]$

(a)

(d)

2 tet who to antennarag what are its lo prance

* Antenna array is an assembly of radiating elerionts an electrical and geometrical configuration.
T Total field of an array is the vector addison of field radiating from individual? elements. It assumes current in each element is same as an isolated eleron \# The elements af array is arranged in such gemerio configuration of separation beth elements so that field from element interfere constructively in desired direction and interferes destructively in opposite direction.
y Advantages
(1) They provide the better directivity
(8) They provide high gain

11 array antenna.
(3) Can generate different array pattern without changing its physical dimension (by excibing its elements with different currents)

* various Forms of Antenna Array.
(1) Broadside array (Radiation af array is normal duauis
(2) End fire array (Radiation of array is along auis-farra

O Collinear array (Antenna arranged in line do line.....
(4) Parasitic array (Feeding in only one loment)

H consider two element array $1 d Q$
(point sources) Separate by distance d. Pt pis suffimtly far from antenna systems. Then wave forms antenna -1 reaches pt P Late than wares formantenad 2 because af path differeme
 $d \cos d$.
t In terms of wavelength
Path deference $=\frac{d \cos \phi}{1}$
\# The total phase difference (ψ) an $p t p$ is
$\psi=0 \pi$. path difference $t \alpha, \alpha=$ phase different
$=\frac{2 \pi d \cos \phi+\alpha}{\lambda}+\alpha$ due to current.

$$
\psi=\beta \alpha \cos \phi+\alpha
$$

Case 1: Array of two point sources of same amplitude
prone
2004: Find exp for to bal electric field of two elerosent as array of non directional radiator.
2006 2009

Plot radiation pattern for boo element array
separated by width r $1 / 2$ \& $\alpha=0$.
Find maxima, minima a hal f power $p t$.
キ

\# Let's consider two point sources (isotropic) separated by distance d' hawing same aroplitude and oscillating in same phase as shown in fig.
\# The two point sources are Located symmetrically wo torigl of coordinates system?.
ague y \quad megured antroctube from tore th an
7. At the distane point, field from source lags by by $e^{-j 1 / 2}$ a from source 2 leads by e $e^{j / 2}$.
\therefore Tot al field $E=E_{D} e^{-j / / 2}+E_{0} e^{j \psi / 2}$

$$
\begin{aligned}
& E=\frac{E_{0}\left(e^{-j \psi / 2}+e^{j / 2}\right)}{2} \cdot 2 \\
& E=2 E_{0} \cos \varphi / 2
\end{aligned}
$$

We have $y=\beta d \cos \phi+\alpha, \& \alpha=0 \because$ sa rose phon

$$
\therefore E=2 E_{0} \cos \left[\frac{\beta d \cos \phi}{2}\right]
$$

Th To draw field Pattern, we need maxima minimal half posen points
Let's considen $d=d / ?$
Then

$$
\begin{aligned}
& E=2 E_{0} \cos [2 \pi / 4 \cdot 1 / 2 \cdot \cos \phi] \\
& E=2 E_{0} \cos [\pi / 2 \cos \phi]
\end{aligned}
$$

\# On Normalization [make its maximum value unity, set $26=$

$$
E_{n}=\cos [\pi / 2 \cos \phi]
$$ ie div ide by main value

Maxima
$\#$ maxima will occur when $\cos [\pi / 2 \cos \phi]= \pm 1$

$$
\pi \pi / 2 \cos \phi= \pm n \pi
$$

$$
\begin{aligned}
& \text { Foo } n=0, \quad \pi / 2 \cos \phi=0 \\
& \pi \cos \phi=0
\end{aligned}
$$

ming mama occur at $\therefore \rho=90^{\circ} \& 270^{\circ}$

* minima will occur when $\cos [\pi / 2 \cos \phi]=0$:

$$
\begin{gathered}
=F \cos n=0, \quad \begin{array}{c}
\quad \pi / 2 \cos \phi= \pm\left(2 r_{2}+1\right) \pi / 2 \\
\cos \phi= \pm \pi / 2
\end{array} \\
\cos \phi= \pm 1
\end{gathered}
$$

\therefore maxima occur at $\$=0^{\circ} \& 180^{\circ}$
$0(1 / 2 \cos \omega)-1 / \sqrt{2}$
or $\pi / 2 \cos \phi= \pm(2 n+1) \pi / 4$
For $n=0$,
$\pi / 2 \cos \phi= \pm \pi$
$\cos \phi=11 / 2$
\therefore tat powenpoid occro $\therefore 4=60^{\circ}$ \& 120°

and pppastephane $\left(\alpha=180^{\circ}\right]$
F consider hoo point sources separated by distance ha Same amplitude and opposite phage.

H Since the tho sources are opposite in phase

$$
\begin{aligned}
E & =E_{0} e^{j \psi / 2}-E_{0} e^{-j \psi / 2} \\
E & =E_{0}\left[\frac{e^{j \psi / 2}-e^{-j \psi / 2}}{2 j}\right] \times 2 j \\
& =2 j E_{0} \sin \psi / 2
\end{aligned}
$$

$$
E=2 j \epsilon_{0} \sin \left(\frac{\beta d \cos \phi}{2}\right] \quad[\because \psi=\beta d \cos \phi\rangle
$$

The ρ operator indicates, phase reversal in one of the source results in 90° phone "Shift of total field. * Let's consider $d=1 / 2$

$$
\text { Norroulsing }\left[2 j E_{0}=1\right]
$$

maxima

$$
E=\sin \left(\pi y_{2} \cos \phi\right)
$$

$$
\begin{aligned}
& \sin (\pi / 2 \cos \phi)=11 \\
& \cos \pi / 2 \cos \phi= \pm(2 n+1) \pi / 2
\end{aligned}
$$

For $n=0, \pi / 2 \cos \phi=+\pi / 2$
$\cos \phi= \pm 1$

$$
\therefore \phi=0^{\circ} 8180^{\circ}
$$

$\frac{\text { mining }}{\sin (\pi / 2 \cos \phi)}=0$
$\pi / 2 \cos \phi=\operatorname{In} \pi$
for $n=0, \pi / 2 \cos \phi=0$

$$
\begin{gathered}
\cos \phi=0 \\
\therefore \phi=90^{\circ} 8270^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{aligned}
\therefore E & =2 j E_{0} \sin \left(\frac{2 \pi}{1} \cdot \psi_{2} \frac{\cos \phi}{2}\right) \\
E & =2 j E_{0} \sin (/ 2 \cos)
\end{aligned} \\
& E=2 j E_{0} \sin (\pi / 2 \cos \phi)
\end{aligned}
$$

f The sourle are arranged win cosel
Totod field $E=$ Co $e^{j \phi / 2}+\operatorname{co} e^{-j \psi / 2}$

$$
\begin{aligned}
& \begin{array}{l}
E=2 \operatorname{cocos} \phi / 2 \\
\psi=\beta d \cos \phi+\alpha, \alpha=90^{\circ}(\pi / 2)
\end{array} \\
& \therefore \quad \therefore E=2 \operatorname{cocos}\left(\frac{\beta d \cos c}{2}+\pi\right) \\
& \text { Fíd }=C / Q \text { \& wbrachiry } \\
& {[E \cos [\pi / 2 \cos \phi+\pi / 2]}
\end{aligned}
$$

maxing

$$
\begin{aligned}
& \cos (\pi / 2 \cos \phi+\pi)= \pm 1 \\
& 7 y_{2} \cos \phi+\pi / 4= \pm n \pi
\end{aligned}
$$

$\operatorname{Tos} n=0, \pi / 2 \cos \phi=-\pi / 4$

$$
\begin{array}{r}
\cos \phi=-1 / 2 \\
\therefore \phi=120^{\circ}, 240^{\circ}
\end{array}
$$

primas
$\cos [\pi / 2 \cos \phi+\pi / 9]=0$
$\pi / 2 \cos \phi+\pi / 4=v(2 n+1) \lambda y_{2}$
For $n=0$,

$$
\begin{aligned}
& \pi / 2 \cos \phi+\pi / 4= \pm 7 / 2 \\
& 7 / 2 \cos \phi=\pi / 4 \text { or }-3 \pi / 4 \\
& \cos \phi=1 / 2 \text { or }-3 / 2 \\
& \therefore \phi=60^{\circ} \& 300^{\circ} \text { (notvolia) }
\end{aligned}
$$

Hat molen

$$
\begin{aligned}
& \cos (\pi / 2 \cos \phi+\pi / 4)= \pm y \\
& 7 / 2 \cos \phi-1 / / 9-z(2 \pi m)
\end{aligned}
$$

For $n=0$

$$
\begin{aligned}
& \pi / 2 \cos \phi+\pi / 4= \pm \pi / 4 \\
& \pi / 2 \cos \phi=0 \text { or }-\pi / 2 \\
& \therefore \cos \phi=0 \text { or }-1 \\
& \therefore \phi=90^{\circ} \& 270^{\circ} \& 180^{\circ}
\end{aligned}
$$

and and phase.
th this is the more general case involving tho isotropic point sources with unequal amplitude and any phase di $\operatorname{say} \alpha$.

\# Lee's take source 1 a reference to p with amplitude of Sow ne 1 GE E1 and source $200 E_{2} \quad \Delta E_{1}>E_{2}$

* Then trial phase difference is

$$
\psi=\beta d \cos \phi+\alpha
$$

H Now the total held iq given by

$$
E=E_{1} e^{j 0}+\epsilon_{2} e^{j \psi}
$$

$$
=G_{1}\left[1+\frac{E_{2}}{E_{1}} e^{j \psi}\right]
$$

$$
\begin{aligned}
& =E_{1}\left[1+k e^{j \psi}\right] \text { whee } k=\frac{E_{2}}{E_{1}} \\
& =E_{1}[1+k(\cos \psi+\rho \sin \psi]
\end{aligned}
$$

$$
=\epsilon_{1}\left[1+k(\cos \psi+f \sin \psi] \text { since } \epsilon_{3}\right) \epsilon_{2} \quad \therefore 0 \leqslant \pm 5
$$

$$
E=E_{1} \sqrt{(1+k \cos \psi)^{2}+(k \sin \psi)^{2}}<\phi
$$

do then the exp for trot electro ted rationed by noes an antenna array.

4 consider n isotropicporint sources of equal amplitude and spacing arranged as a linear array cad having an uniform progressive phasesbift.
th Sure is taken as the reference for phase, thus at distant point p in ϕ direction

the field from source 2 is advanced in phasewrt Source 1 by ψ, find from source 3 is advanced in phase wit source 1 by 2ψ i so on.
th The total electric field is

$$
\begin{aligned}
& E_{1}=E_{0}+E_{0} e^{j \psi}+E_{0} e^{2 j \psi}+E_{0} e^{3 j \psi}+\cdots+E_{0} e^{(n-i) j \psi} \\
& E_{T}=E_{0} \Gamma+e^{j \psi}+e^{2 j \psi}
\end{aligned}
$$

$$
\begin{align*}
& \left.E_{+}=E_{0}+E_{0} e^{j \psi}+E_{0} e^{2 j \psi}+E_{0} e^{3 j \psi}+\cdots+E_{0} e^{(n-i}\right) \\
& E_{T}=E_{0}+e^{j \psi}+e^{2 j \psi}+e^{3 j \psi}+\cdots+e^{(n-1) j} \\
& m u l t i p l y i n g \text { by } e^{j \psi} \\
& E_{T} e^{j \psi}=E_{0}\left[e^{\left.j \psi+e^{2 j \psi}+e^{3 j \psi}+e^{4 j \psi}+\cdots+e^{n j \psi}\right]}\right. \\
& \text { ubstracting (2) from } 1
\end{align*}
$$

$$
\begin{aligned}
& E_{T} e^{j \psi}=E_{0}\left[e^{i \psi}+e^{2 j \psi}+e^{3 j \psi}+\right. \\
& \text { Subtracting (2) from }(1) \\
& E_{T}\left(1-e^{j \psi}\right)=E_{0}\left[1-e^{j n \psi}\right]
\end{aligned}
$$

$$
\begin{aligned}
\therefore E_{T} & =E_{0} \frac{\left(1-e^{j \cap \psi}\right)}{\left(1-e^{j \psi}\right)} \\
& =E_{0}\left(\frac{-e^{j n \psi / 2}}{-e^{j \psi / 2}}\right) \frac{\left(-e^{-j n \psi / 2}+e^{j n \psi / 2}\right)}{\left(-e^{-j \psi / 2}+e^{j \psi / 2}\right)} \frac{2 j}{2 j} \\
& =E_{0} \sin n \| n
\end{aligned}
$$

$$
=E_{0} \frac{\sin n \psi / 2}{\sin \psi / 2} \cdot e^{\left.\frac{j(n-1}{2}\right) \psi}
$$

If the reference pt is shifted tothe centre of array: the term $e^{j\left(\frac{n-1)}{2}\right.}$ y can be eliminated

$$
\begin{equation*}
\therefore E_{1}=E_{0}\left(\frac{\sin (n, / 2)}{\sin \psi / 2}\right) \tag{3}
\end{equation*}
$$

Bo represents individual source patten or prion ary pattern of $\left(\frac{\sin n \psi / L}{\sin \psi / 2}\right)$ represents array factor on secondary factor.

Ed
Applying L-Mopital rule far oHs ap g with limit $\phi \rightarrow 0$

$$
\begin{aligned}
& \operatorname{cim} \operatorname{tim} \frac{d \psi \sin (n \psi / 2)}{\partial / \partial \psi \sin (\psi / 2)} \\
& \therefore \quad \therefore \quad \lim \frac{n / 2 \cos (n \psi / 2)}{1 / 2 \cos \psi / 2} \\
& \therefore \phi \rightarrow 0 \\
& =n
\end{aligned}
$$

Thus $\frac{\sin (n \psi / 2)}{\sin (\varphi / 2)}$ has maximum value n ' col $\psi=0$
Thus normaning (4) [diving by max vale] $\left.\frac{E t}{\text { Et }}\right|_{\text {man }}=1$

$$
E_{n}=\frac{E_{1}}{E_{0 n}}=\frac{1}{n} \frac{\sin (n \psi / 2)}{\sin (\psi / 2)}
$$

rome
bROAD SIDE ARRAY \& END FIRE ARRAY 2007 Distinguish Broad side and End Fire Array. Devi 2009 expression for Bear width in both hypes.

(3)

(3) Each individual antennas (or elements) are equally spaced and each elerone is fed with current of equal magnitude and all in same phase $=:-$

END FIRE
(2) The radiation pattern of end fire is along the axis of antenna array
(2)

(3) Each individual elena ents in end fire array are fetal spaced and is fed with current of equal magnitude but their phase varies progressively along the ling af antenna to generate the desired radiation pattern along axe is coif antenna ambry

* Consider a broadside array of 4 elements

$$
r_{2}, i=n=4, d=r_{2}, \alpha=0
$$

we have,

$$
E_{n}=\frac{1}{n} \cdot \frac{\sin (n \psi / 2)}{\sin (\psi / 2)}=
$$

Here,

$$
\begin{aligned}
& \phi=\beta d \cos \phi+\alpha \\
& \psi=\frac{2 \pi}{\lambda}+2 \cos \phi+0 \\
& \varphi=\pi \cos \phi \\
& \therefore E_{n}=1 / 4 \frac{\sin \left(4 \cdot \frac{\pi \cos \phi}{2}\right)}{\sin \left(\frac{\pi \cos \phi}{2}\right)} \\
&=1 / 4 \frac{\sin (2 \pi \cos \phi)}{\sin (\pi / 2 \cos \phi)} \\
&=\frac{2 \sin (\pi \cos \phi) \cdot \cos (\pi \cos \phi)}{4 \sin (\pi / 2 \cos \phi)} \quad[\because \sin 2 \theta= \\
& 2 \sin \theta \cdot \cos x \\
&=\frac{2 \cdot 2 \sin (\pi / 2(0) \phi) \cdot \cos (\pi / 2 \cos \phi) \cos (\pi \cos \phi)}{4 \sin (\pi / 2 \cos \phi)} \\
& E=\cos (\pi / 2 \cos \phi) \cdot \cos (\pi \cos \phi)
\end{aligned}
$$

maxima
En will be max when

$$
\begin{aligned}
& \cos (\pi / 2 \cos \phi) \cdot \cos (\pi \cos \phi)=1 \\
& \cos , \cos (\pi / 2 \cos \phi)=1 \quad \& \quad \cos (\pi \cos \phi)=1
\end{aligned}
$$

This requirement is satisfied when

$$
\begin{aligned}
& \phi=(2 k+1) \pi / 2 \quad k=0,1 \\
& \therefore \phi=90^{\circ}, 270^{\circ}
\end{aligned}
$$

2 $x+\pi \cos$
Fur rojosuda
$\cos (\pi / 2 \cos \phi)(0 s(\pi \cos \phi)=0$
Either $\cos (\pi / 2 \cos \phi)=0$

$$
\phi=k \pi
$$

$0 p \quad \cos (\pi \cos \phi)=0$
OR $\quad \phi=60^{\circ} 120^{\circ}-290^{\circ}$

TBenronidth
Wet be the direction of null \& θ be the complementary angle of ϕ.
Then 2θ is the bearmuidth af Primary lobe.

* For obtaining null in field
strength
 strength,

$$
\begin{align*}
& E_{n}=0 \\
& \sigma_{r} \frac{1}{n} \frac{\sin (n \psi / 2)}{\sin (\psi / 2)}=0 \\
& \operatorname{con}_{0} \sin (n \psi / 2)=0 \tag{1}
\end{align*}
$$

we have,

$$
\begin{aligned}
& \varphi=B d \cos \phi=\frac{2 \pi}{\Omega} \cdot d \cos (90-\theta) \quad[\because \phi=90-\theta \\
& \therefore \varphi=\frac{2 \pi}{C} d \sin \theta
\end{aligned}
$$

putting value of 4 in eq (i)

$$
\begin{aligned}
& \sin \left(n \frac{2 \pi d}{2 \pi} \sin \theta\right)=0 \\
& \sin \left(\frac{n \pi d \sin \theta}{r}\right)=0 \\
& \frac{n \pi d \sin \theta}{n}=k \pi \\
& -\sin \theta=\frac{k d}{n d} \\
& \therefore \theta=\sin ^{-1}(k, 1, n d) \quad 2 \theta=2 \sin ^{-1}\left(\frac{k n}{n d}\right)
\end{aligned}
$$

For specific case of $d=r / 2$
$-20=2 \sin ^{-1}\left(2 n^{-}\right)$
FOr $n=9,20=60^{\circ}$

$$
n=10 \quad 20=23^{\circ}
$$

\therefore Beamwidth decreases with ours bor of radiator fence directivity increases with increase in number of radiators．

桀 In End Fire array there exists certain phase difference bet the adjacent element bthemax radiation pattern occurs in the direction of array ie $a t \phi=0$ ．
we know，$\psi=\beta d \cos \phi+\alpha$
or， $0=\beta d \cos 0+\alpha \quad[\because$ Fro end Fire

$$
\alpha=-\beta d
$$ array $\phi=\operatorname{od} \psi=$

$$
\begin{array}{r}
\alpha=-\frac{2 \pi}{\lambda} d \\
f o r \\
\alpha=0 \quad \& \sqrt{\alpha=\frac{2 \pi}{\lambda} d} f_{0} \\
\theta=181
\end{array}
$$

\＃This means the phase bet adjacent elem en $\theta=1$ is retarded progressively by the same amount as the spacing between sources in radians Thus if spacing ben is 84 ，source 2 should lag source f by 90° ，source 3 should（ag source 2 by 90° and so on．
 apart, ie $n=4 d d=1 / 2$

$$
\begin{aligned}
\psi & =B d \cos \phi+\alpha \\
& =\frac{2 \pi}{A} \cdot r / 2 \cos \phi+\left(-\frac{2 \pi}{1} d / 2\right) \quad\left[: \alpha=\frac{-2 \pi d}{4} d\right. \\
\psi & =\pi \pi(\cos \phi-1)
\end{aligned}
$$

we have,

$$
\left.\begin{array}{rl}
E_{n}=\frac{1}{n} \frac{\sin (n \phi / 2)}{\sin (\phi / 2)} & =\frac{1}{n} \frac{\sin \left[\frac{n \pi}{2}(\cos \phi-1)\right]}{\sin [\pi / 2(\cos \phi-1)]} \\
& =\frac{1}{4} \frac{\sin [2 \pi \cdot(\cos \phi-1)]}{\sin [\pi / 2(\cos \phi-1)]}[\because n=4) \\
& =\frac{1}{4} \frac{2 \cdot \sin [\pi(\cos \phi-1)] \cdot \cos [\pi(\cos \phi}{\sin [\pi / 2(\cos \phi-1)]} \\
& =\frac{1}{2} \cdot 2 \sin [\pi / 2(\operatorname{sos} \phi-1)] \cdot \cos [\pi / 2(\cos \phi-1)] \\
\sin [\pi / 2(\cos \phi-1)]
\end{array}\right]
$$

$\because \max \operatorname{sag}$
HEn will be max when,

$$
\cos [\pi / 2(\cos \phi-1)] \cdot \cos [\pi(\cos \phi-1)]=1
$$

\# For this cong ${ }^{n}$ bot ${ }^{h} \cos [\pi / 2(\cos \phi-1)] \& \cos [7 \pi(\cos \phi-1)]$
should be unity.
\# This condition is satisfied when $\phi=k \pi /$ when k $=0,1$.

* \therefore Direction of max ${ }^{m}$ field is in directiongepradiatorl elements itself
$F F 61 m \cdot n$ value of $E n$.

$$
\cos [\pi / 2(\cos \phi-1)]: \cos [\pi(\cos \phi-1)]=0
$$

Either
or

$$
\begin{aligned}
& \cos (\pi(\cos \phi-1))=0- \\
& \therefore \phi=60^{\circ}, 190^{\circ}, 290^{\circ}, 300^{\circ}
\end{aligned}
$$

rbearmwidth

\$ we have ϕ is the direction of null and thus 2ϕ is the beamwidth of the primary lobe.

* For obtaining null field

$$
\begin{gathered}
E_{n}=0 \\
\text { or } \frac{1}{n} \frac{\sin (M / 2)}{\sin (\psi / 2)}=0
\end{gathered}
$$

or, $\sin \left(\frac{2 \psi}{2}\right)=0$
Beamwid th $=2 \phi$

$$
\begin{aligned}
& \frac{n \psi}{2}= \pm k \pi \\
& \psi=\frac{2 n \pi}{n}
\end{aligned}
$$

For End fire array $\varphi=\frac{2 \pi}{\lambda} d(\cos \phi-1)$

$$
\therefore \frac{2 \mathbb{R}^{n} \pi}{n}=\frac{\mathscr{2} \pi}{r} d(\cos \phi-1)
$$

$$
\begin{aligned}
& 2 \sin ^{2} \phi / 2=\frac{k-1}{n d} \\
& \sin \phi / 2=\sqrt{\frac{k \pi}{2 n d}} \\
& \therefore \frac{\phi}{2}=\sin ^{-1}\left(\sqrt{\frac{k n}{2 n d}}\right) \\
& \therefore \phi=2 \sin ^{-1}\left(\sqrt{\frac{k a}{2 n d}}\right) \\
& \therefore 2 \phi=4 \sin ^{-1}\left(\sqrt{\frac{k r}{2 n d}}\right)
\end{aligned}
$$

For first null $K=1$

$$
2 \phi=4 \sin ^{-1}\left(\sqrt{\frac{1}{2 n} d}\right.
$$

In End Fire array also when no of sources'ni increases \rightarrow beamwidthdecreases \rightarrow Thus directivity
increases increases.

* It is one of the methods of obtaining radiation patter of an array.
\# It states that:
The total field of an array of non isotropic but similar sources is the product of individu of source patten and the pattern of an array of isotropic point sources each located of the phase centre of individual sources and having the same relative amplitude and phase
$\because \operatorname{cg}$.

The resultant field will be

$$
\begin{aligned}
E_{N} & =E_{N_{1}} \times E_{N_{2}} \\
& =\cos \phi \cdot \cos (\pi / 2 \cos \phi)
\end{aligned}
$$

fig (a) 4 isotropic elements fig (b) spaced ry'z a part

fig (c) potternat two point sores
apart

+ Consider clement 1 and 2 as one mit and is placed midway of the elements. And elerepent 2 \& 4 operate an another unit as shown in fig
* Two point sources spaced do apart ped in phase has pattern an shown in fig (0)
* The radiation pattern for hoo point sources separated by"r distance apart (of big b) is as shown in fig (d)

If g (a) Radiation pattern pas two point Sucres a distance apart.
\# Now the radiation pattern op four isotropic eleropots can be obtained by multiplying radiation patten of fig © (0

Individual lust patter
ide to two individual elements)

Group Pattern core to array of bo is a tropic point sources,

ANTENNA PROPAGATION

- Transmission loss between antennas.
(Fundamental ear for Free space) (frill Transom Form
20a Derive Free space Tans mission formula

2006. Derverriss. Thansmsthn formula. Also derive ea n fer basic Transmission Lose
2007. For Tx x syjum derive the expression for free span $\operatorname{coss}(\rho S c)$ in de.

* Fris Transmission formula gives the powen received over a radio comm link.
* Let W_{T} be the power fed to transmitting Antenna of effective area Aet.
* Assuming transmithing
Antenna to be isotrg Antenna to be isotropic, power pen unit area (posen density) at distance d ie at heceiven antenna is

fig: common CKT from transamissio Antenna to receiving antenna separated by distarice 'd'
\# If the Transition $\frac{1}{4 \pi a} 2$
density arailabe of Antenna has gain G_{7}, the power

$$
\begin{aligned}
& \text { ailabe at receiving an } \\
& \text { Pave density }=\frac{G_{T} d_{t}}{4 \pi d^{2}}
\end{aligned}
$$ aperture 'ter.' Some cf the power radiated by transmitting Antenna, The pow en collected by receiving antenna is,

$$
\begin{aligned}
& \text { Poi en received }\left(W_{0}\right)=\text { pow en density xeffetremec } \\
& =-W_{0}=G+W_{T}
\end{aligned}
$$

$$
\text { we have Effective Area Aet }=\frac{r^{2}}{4 \pi T} G
$$

$$
\begin{aligned}
& w_{B}=\frac{G_{T} W_{T}}{4 \pi d^{2}} \times \frac{r^{2}}{4 \pi} \cdot G_{R} \\
& \therefore \frac{w_{0}}{w_{T}}=G_{T}\left(\frac{d}{4 T}\right)^{2}
\end{aligned}
$$

This is Fills Traoswiston Formula.
where def are in meters.
In ter of effective Aperture

$$
\frac{w_{0}}{w_{t}}=\frac{\text { Ser Aet }}{d^{2} d^{2}}
$$

F The basic transmission Loss lb is defined as the reciplocal of Fris eq expressed in decibel

$$
\therefore L_{b}=10 \log \left(\frac{w_{T}}{w_{R}}\right)
$$

For isotropic Antenna $G_{T}=G_{R}=1$

$$
\begin{aligned}
& \therefore L_{b}=10 \log \left(\frac{4 \pi d}{d}\right)^{2} \\
& L_{b}=20 \log \left(\frac{4 T d}{C}\right) \\
& L_{b}=20 \log \left(\frac{4 \pi d f}{c}\right) \quad \because d=c / p
\end{aligned}
$$

Expressing dink \& fin MHz we get

$$
L_{b}=32.45+20 \log F+20 \log d
$$

3 Always take care ofunitsq. 3 Fin MHz \& Fard a in numerical. d in KM

For directive antennas. If gains are given in dB

$$
\log =G_{T}+G_{p}-L_{b}
$$

If gains are not given in dB

$$
\begin{aligned}
& G_{T}=10 \quad \log g_{7} \\
& G_{R}=10 \quad \log g_{R}
\end{aligned}
$$

2008
NUnERICALS
Q1. What is the max h power received at a distance of 10 kin over a free space given a 1000 NHz croult consist of a transmitting antenna with $2 s$ de gar and receiving antenna with $I 0$ d B gan with respect to pojrepic antenna.
The input power to ransmithog antenna is 150
Given.

$$
\begin{aligned}
& d=10 \text { Gro } \\
& f=1000 \mathrm{MHz} \\
& G_{T}=25 d B \quad=316 \cdot 23 \quad[\because 10 \log x=25] \\
& a_{R}=20 d B \quad=100 \\
& w_{T}=150 d B \quad 1 \times 10^{15} \mathrm{~W} \\
& A_{0}=C / p=\frac{3 \times 10^{8}}{1000 \times 10^{0}}=03 \mathrm{~m}
\end{aligned}
$$

Then pores Received will te

$$
\begin{aligned}
w_{R} & =w_{T} \cdot G_{T} G_{R}\left(\frac{1}{4 \pi d}\right)^{2} \\
& =1 \times 10^{15} \times 316.23 \times 100\left(\frac{0.3}{4 \times 3.19 \times 10 \times 10^{3}}\right)^{2} \\
& =1.8 \times 10^{8} \mathrm{w} \\
& =10 \log \left(1.8 \times 10^{8}\right) \\
w_{R} & =82.56 d B
\end{aligned}
$$

OR

$$
\begin{aligned}
& \left.w_{R}(d B)=w_{t}(d B)+G_{1}(d B)+G_{R}(d B)-\operatorname{cod} B\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\therefore W_{R}(d B) & =150+25+20-112-95 \\
W_{Q} & =82.56 d B
\end{aligned}
\end{aligned}
$$

In a microwave communication link two reentry cal antene. operating at 100 abr is used with power gan of fo do. If te power is aw, find received pow en. if range of link is 30 km
we have, $w_{R}(d B)=w_{T}(d B)+G_{1}(d B)+G_{R}(d B)--L 5$

$$
\begin{aligned}
L_{S} & =32 \cdot 95+20 \log f+20 \log d \\
& =32.95+20 \log 100000+20 \log 36 \\
& =161.99
\end{aligned}
$$

$$
\therefore w_{Q(a B)}=0+40+40-161.99
$$

$$
W_{R}(d B)=-81.99 \mathrm{~dB}
$$

$$
10 \log (W n)=-81.99
$$

$$
w_{g}=6.3 \times 10^{-9} \mathrm{w}
$$

Q3. Two planes 15 km apart are in radio comma. The Transmitting plane delivers sol w its antenna gain being 10. The power absorbed is 2 kN by receiving antenna. Find the effechve area of Receiving antenna.
San.

$$
\begin{aligned}
& d=15 \mathrm{~km} \\
& w_{T}=500 \mathrm{~m} \\
& u_{t}=10 \\
& w_{R}=2 \mathrm{mw}
\end{aligned}
$$

we have
Received pow en = pow en density x Effective area of Rxante

$$
\begin{aligned}
& W_{R}=\frac{G_{T} W_{T}}{4 \pi d^{2}} \times A_{\text {A }} \\
& \therefore A_{R}=\frac{W R \times 4 \pi d^{2}}{G_{T} W_{T}}=\frac{2 \times 10^{-6} \times 4 \times 3.19 \times\left(15 \times 10^{3}\right)^{2}}{10 \times 500} \\
& \therefore A^{2}=13 m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f=100912=100000 \mathrm{MH2} \\
& \therefore \theta_{1}=40 d 0 \\
& a_{R}=40 \mathrm{co} \\
& d=30 \mathrm{~cm} \\
& w_{t}=1 W_{2}=10 \log 1=o d B \\
& W R=\text { ? }
\end{aligned}
$$

Qu 4 Find the basic path loss for a comment cation form earth to the mon. The earth aptrathag of 4000 Mm Assume distance beth "moonifeartirs 384000 b
Son

$$
\begin{aligned}
\text { Path loss } & =32.95+20 \log \text { flam })+20 \log d(\mathrm{~m} \\
& =32-95+20 \log 4000+20 \log 98900 \\
& =216.17 d 3 .
\end{aligned}
$$

$$
=216.17 \mathrm{~dB} . \underline{10 g} 4
$$

Qi 2005 loo mans] [hunk eudaet Design]:
consider the case af symehrorous satellite relay
 (uplink) and 4 and is used fro dawning. Consider 30 m diameter ground Antenna \& 0.3 m diameter satellite antenna. Assuming $67 y$ on effective are and distance af satellite 36000 km from earth Station. Find the following

1. Basic Transmission cosy
2. With around transmitted power ap 12 kW , find power received at the satellite.

- 4. with satellite Transmitted power of 1 w find the power received at ground station

$$
\begin{aligned}
& \text { uplink }=6 \mathrm{anz}=6000 \mathrm{Mnz} \\
& \text { downlink }=4 \mathrm{Gmz}=4000 \mathrm{mmz} \\
& d=36000 \mathrm{~km} . \\
& \text { Ae }=67 \% . \\
& \text { ground antenna diameter }=30 \mathrm{~m} \\
& \text { satellite " " }=0.3 \mathrm{~m} .
\end{aligned}
$$

(1) Basic $T \times \operatorname{coss}$

$$
\begin{aligned}
& =195.61 \mathrm{~dB}=
\end{aligned}
$$

(i) Earth Station
(a) Upink \Rightarrow

$$
=63 \cdot 76 \mathrm{~dB}
$$

$$
\begin{aligned}
&(b) \text { downine } \Rightarrow G_{\text {es }}(\text { dom linu })=10 \log \left[0.67 \times 3.19 \times 30^{2} \times 4 \times 3.10\right. \\
&=60.25 \mathrm{~dB} \\
&\left(\frac{3 \times 108}{4 \times 109}\right)
\end{aligned}
$$

(ii) Satellite

$$
\text { (9) } \begin{aligned}
\text { uplink } \Rightarrow G_{\text {Saf }}(\text { uplins }) & =10 \log \left[\frac{0.67 \times 3 \cdot 19 \times \frac{0.3^{2}}{9} \times 9 \times 3.19}{\left(\frac{3 \times 100}{6 \times 10^{9}}\right)}\right. \\
& =23.76 \mathrm{~dB}
\end{aligned}
$$

(b) 1

$$
\begin{aligned}
\text { Downink } \Rightarrow G_{\text {sif }}(\text { monina }) & =10 \log \left[\frac{0.67 \times 3.19 \times \frac{0.3^{2}}{4} \times 4 \times 3.14}{\left(\frac{3 \times 108}{4 \times 109}\right)}\right] \\
& =20.24 \mathrm{~dB}
\end{aligned}
$$

(3) If

$$
\begin{aligned}
& 6 a n 2 c o n \\
& 2 c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
w_{T(\text { gnd })}=12 k W=10 \log (12000)=40.79 \mathrm{~d} B \\
w_{R}(\text { sat })=?
\end{array} \\
& W_{R}(\operatorname{sat})=? \\
& \begin{aligned}
W R(\operatorname{sat}) & =W_{T}(d B)+G_{\text {Es }}(\text { uplink })+\operatorname{Gsat}\left(\text { upine }-L_{b}\right. \text { upink }
\end{aligned} \\
& =40.79+63.76+23.76-199.13 d B \\
& =-70 \cdot 8 \mathrm{ds}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ges }(0 p \operatorname{tin} 4=\log \log (g) \\
& -\operatorname{lolog}\left(\frac{\operatorname{ses} \times 4 \pi}{r^{2}}\right) \\
& =10 \log \left[\frac{067 \times \frac{77 d^{2}}{4} \times 9 \pi}{\left(\frac{0}{\text { puphind }}\right)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& W R(\epsilon)=?
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lb downsing } \\
& =0+60.25+20.29-195.61 \\
& =-115.12 d B \text {. }
\end{aligned}
$$

An
0620072005
A Geostatianary TV satellite $e a^{2}$ antena have freq linu 13.78 GM 2 af distane 36000 km . The Transmot pase Pt is 110 w \& Trarmmit antennagarm $a_{T}=30 \mathrm{ds}$. calculate.
i) powen density (watt/m2) at Recerve artenda
ii) What should be antenna Area S_{A} \& antenna. Gain G_{A} in dB if Receiven antenna receives a power P_{R} which exceeds a threshdot

$$
P_{0}=2 k 10^{-11} \mathrm{w}
$$

som
Try yourself based on the dervahion of frlls eqn
Mint:

$$
\begin{aligned}
& \text { Porsen densily }=\frac{w_{T} G_{T}}{4 \pi d^{2}} \\
& \text { Revene prosen }=\frac{w_{T} G_{T}}{4 \pi d^{2}} \times A e \quad \text { find Aerform this } \\
& \frac{w_{R}}{w_{t}}=\frac{G_{1} G_{Q} d^{2}}{(4 \pi d)^{2}}
\end{aligned}
$$

Thunsisbion $20 s 5$ as a function of frequency
H The variation of transmission loss with frequency depends on the circumstance of the problem:

- Vehicular communication (Antenna with fixed curehimaga For air to ground links and navigation system, it is normally required that both antennas have amin diretiona coverage (ie they have fixed direction d gate)

$$
\therefore \frac{w_{g}}{w_{T}}=\frac{d^{2} G_{1} G_{p}}{(4 x d)^{2}}=\frac{c_{+} G_{9}}{(4 d)^{2}} \times \frac{c^{2}}{f^{2}} \quad\left[\because d=c_{p}\right]
$$

In this case Received powell is inversely proportional to square of frequency f Transmission loss (w, we) is directly proportional to square of frequency.
(3) Eath-satellite communication:

In this case, antenna at earth would be directive [ie. not fixed gain] and antenna at satellite is isotropic. Assuming Earth os $R \times-\frac{p}{s}$ satellite as $7 \times$

$$
\begin{aligned}
& \frac{w_{R}}{w_{T}}=\frac{\lambda^{2} G_{T} G_{R}}{(4 \pi d)^{2}}=\frac{\lambda^{2} G_{T}}{(4 T d)^{2}} \quad \therefore \frac{4 \pi}{\lambda^{2}} \cdot A_{e R} \quad\left[\because G_{R}=\frac{4 \pi}{r^{2}} \cdot A_{\mathrm{e}}\right] . \\
& =\frac{a_{T} \text { Ar }}{4 \pi d^{2}} \\
& \text { er is offechue } \\
& \text { area? Earth status } \\
& \text { antenna. }
\end{aligned}
$$

If Earth os $T x$ of Satellite- Rx then,

$$
\frac{w_{R}}{w_{T}}=\frac{G_{R} A_{e}}{4 \pi d^{2}}
$$

In both case. Transmission los is independent of frei
(3) microwave link:

In this case both antennas are made directional

$$
\begin{aligned}
\frac{w_{R}}{w_{T}}=\frac{d^{2} G_{T} G_{R}}{(4 \pi d)^{2}} & =\frac{d^{2}}{\left(4 \pi^{2} d\right)^{2}} \cdot \frac{\operatorname{tr}}{d^{2}} \cdot \operatorname{Aer} \cdot \frac{4 \pi}{d^{2}} \cdot A c e\left[\begin{array}{l}
\because G_{T}
\end{array}=\frac{4 \pi}{a_{R}^{2}} \cdot A e_{T}\right. \\
& =\frac{A e_{T} A R_{R}}{d^{2} \cdot c^{2}} \cdot \frac{4 \pi}{r^{2}} \cdot A e e
\end{aligned}
$$

\therefore Received posen is directly proparhanal to square of fred and Transmission loss is inversely proportional to square. of frequency.

当Amena Temperate gand signal to noise Rato W04fint the expesstonpar htemnaterperature as nag 2006 for receive transmit system，derive the expression ir y －she fer receiving sy＇tero．
＊Every object with physical temperature above absolute zero radiates energy The amount of energy radiated is usually represented by an equivalent temperature ＇Tb＇known as brightness temperature．
the brightness teroperatime emitted by different sources is intercepted by antennas and it appears at their terminals as antenna temperature．
＊The noise power per unit ow available at terminals of resistor a 0 resistance R at a temperature T_{r} is given by relation

$$
p=K \operatorname{Tr}
$$

where
$P=$ posen per unit band width
$K=$ Boltzmann＇s constant $=1.38 \times 10^{-2.3} \mathrm{~J} / K$
$T r=a b s o l u t e ~ t e m p, K$
\＃If the resistor R is replaced by a loseless antenna of radiation resistance R in an anechoic chamber al temp To，the noise power pen unit Bow available at antenna terminal is same （Provided $T_{C}=T_{r}$ ］

H Now if antenna is removed from anechoic chamber ald pointed at sly of temperate．Ts，the noise power per unit band width is still same［Provided：Ts $=$ Tr］． And we can say that antenna has a noise temp＇TA＇equal． to sexy teriberature＇Ts，

fig（b）Antenna in ar anechoic champ

\＃Thus antenna noise－temperdtrie
may be used to meajhe the
 ray be used to meagre the
distant or sly temperature＇Ts＇
：fig（c） Antenna observir． sky at temp T^{-}．
it is for arterna, the noise pone n pen volt bandwidat
is given hit is given by

$$
P=K T_{A} \quad T_{A}=\text { Arena hergeentree. }
$$

H Total powen is thus.

$$
\text { Totooptre=k Ta } B \text { whee } B \text { is andenth }(3+k)
$$

The the source flue density (power densilpenvortew)
be S and Ae be the Erective area of antenna.

$$
\begin{aligned}
& \therefore S=\frac{P}{A E} \\
& \quad S=\frac{k T A}{A E} \\
& \therefore T A=\frac{S A E}{K} K
\end{aligned}
$$

whish is the antenna temperature.

Signal To Noise Ratio for Receiving Systems of

* If a transroitter radiates a power $p t$ isotopically
and uniformly over a band width $\triangle f t$. It produces a flux density ce t distance r of $\frac{P_{t}}{4 \pi r^{2} \Delta f t}$
- A receiving antenna of effective aperture 'Apr' at distance r can collect posen.

$$
P_{r}=\frac{P_{t} A_{r} \Delta f_{k}}{4 a^{2} \Delta f t} \quad \Delta f_{r}=r e c e i v e n \text { bandwidth }
$$

\# If Transmining antenna has directivihy $D=\frac{4 \pi}{N^{2}}$ Aet Aet $=$ effective aperture o $T \infty$ anlemen
Then, Pr $=\frac{P t \text { Aer Aet }}{r^{2} r^{2}} \frac{\Delta f_{r}}{\Delta f_{t}}$
苂 FOr $\Delta f_{r}=\Delta f+$ (Bandwidth Matched) eq? (1) is fellseqn
\# The noise proven is the sum af antenna noise and receiver noise.

$$
\begin{aligned}
& P_{n}=K T_{A B}+K T_{e B} \quad \text { Te }=\operatorname{effech}^{2} \operatorname{temp} \text { node } \\
& P_{n}=K T_{s y s}
\end{aligned}
$$

where Toys is the system temperature.
This the signal to norse rato formate 8 W hs

$$
\begin{aligned}
& \frac{S}{N}=\frac{P_{r}}{P_{n}} \\
& \frac{S}{N}=\frac{P_{t} A e r A e t}{r^{2} N^{2} K T_{S Y S} B}
\end{aligned}
$$ system.

Ground befered wave.
206400082009

when electric vector is parallel to boundary surface and magnetic vector is perpendicular to boundary Surface

* Applying boundary condition, the tangential component across the boundary is.

$$
\begin{array}{r}
E_{i}+E_{r}=E_{t} \\
\therefore \frac{E_{t}}{E_{i}}=1+\frac{E_{r}}{E_{i}} \tag{1}
\end{array}
$$

\# Assuming permeability of medium to be same

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}
$$

\# From definition of Poynting Vector, Bowen transmitted per square meter is given by $E^{2} / 2$
\# Power of incident wave is $\frac{E_{i}^{2} \cos \theta_{1}}{2_{1}}$

$$
\begin{aligned}
& \because \text { reflected wave is } \frac{E r^{2} \cos \theta_{1}}{2_{1}} \\
& \text { transmitted wave is } \frac{E_{t}{ }^{2} \cos \theta_{2}}{n_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E_{1}^{2} \cos \theta}{21}-\frac{E e^{2} \cos \theta}{n 1}+\frac{E t^{2} \cos \theta 2}{n_{2}} \\
& \text { Dividin }
\end{aligned}
$$

Dividingby $\frac{\epsilon^{2} \cos 01}{21}$

$$
\begin{aligned}
& 1=\frac{E_{r^{2}}^{2}}{E_{1}^{2}}+\frac{n_{1}}{2_{2}} \cdot \frac{E_{1}^{2}}{E_{i}^{2}} \cdot \frac{\cos \theta_{2}}{\cos \theta_{1}} \\
& 1-\frac{E^{2}}{E_{i}^{2}}=\frac{\sqrt{4} \epsilon_{1}}{\sqrt{\mu_{1}}} \cdot \frac{E_{2}^{2}}{E_{1}^{2}} \cdot \frac{\cos \theta_{2}}{\cos \theta_{1}} \\
& 1-\left(\frac{E_{r}}{E_{i}}\right)^{2}=\sqrt{\frac{\theta_{2}}{\epsilon_{1}}}\left(1+\frac{E_{r}}{E_{i}}\right)^{2} \frac{\cos \theta_{2}}{\cos \theta_{1}} \quad\left[\frac{E_{t}}{\varepsilon_{i}}=\frac{\left.1+\frac{E_{r}}{E_{i}}\right]}{]}\right] \\
& \begin{array}{l}
\left(1-\frac{E_{r}}{E_{i}}\right)\left(1+\frac{E_{i}}{E_{i}}\right)=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}\left(1+\frac{E_{r}}{\theta_{i}}\right)^{-2}-\frac{\cos \theta_{2}}{\cos \theta_{1}} \\
1-\frac{E_{r}}{E_{i}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}\left(1+\frac{E_{r}}{E_{i}}\right) \cdot \frac{\cos \theta_{2}}{\cos \theta_{3}}
\end{array} \\
& 1=\frac{E_{r}}{\epsilon_{i}}+\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\cos \theta_{2}}{\cos \theta_{1}}+\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\cos \theta_{2}}{\cos \theta_{1}} \cdot \frac{E_{r}}{E_{i}} \\
& 1-\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\cos \theta_{2}}{\cos \theta_{1}}=\frac{E_{r}}{\epsilon_{i}}\left[1+\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\cos \theta_{2}}{\cos \theta_{1}}\right] \\
& \therefore A_{n}=\frac{E r}{E_{i}}=\frac{1-\sqrt{\epsilon_{2}} / \epsilon_{1} \frac{\cos \theta_{2}}{\cos \theta_{1}}}{1+\sqrt{\epsilon_{2} / \epsilon_{1}} \frac{\cos \theta_{2}}{\cos \theta_{1}}} \quad \text { when } R_{n} \text { is horizontal } \quad \text { reflechon cocfictat } \\
& R_{n}=\frac{\cos \theta_{1} \sqrt{\theta_{1}}-\sqrt{\epsilon_{2}} \cos \theta_{2}}{\cos \theta_{1} \sqrt{\epsilon_{1}}+\sqrt{\epsilon_{2}} \cos \theta_{2}} \\
& =\frac{\sqrt{\epsilon_{1}} \cos \theta_{1} \div \sqrt{\epsilon_{2}-\epsilon_{2} \sin ^{2} \theta_{2}}}{\sqrt{\epsilon_{1}} \cos \theta_{1}+\sqrt{\epsilon_{2}-\epsilon_{2} \sin ^{2} \theta_{2}}} \quad\left[\because \cos \theta_{2}=\sqrt{1-\sin \theta_{2}}\right] \\
& \therefore R_{n}=\frac{\sqrt{\epsilon_{1}} \cos \theta_{1}-\sqrt{\epsilon_{2}-\epsilon_{1} \sin ^{2} \theta_{1}}}{-\epsilon_{1} \cos \theta_{1}+\sqrt{\epsilon_{2}-\epsilon_{1} \sin ^{2} \theta_{1}}}\left[\because \frac{\sin \theta_{1}}{\sin \theta_{2}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}\right]
\end{aligned}
$$

nor conductor we find \in as

$$
\begin{aligned}
\nabla \times \vec{n} & =E j \omega_{0} \vec{E}+\sigma \vec{E} \\
& =j w_{0} \vec{E}\left(\epsilon+\frac{\bar{J}}{j \omega_{0}}\right) \\
& =\vec{E} \epsilon^{1}
\end{aligned}
$$

$$
\therefore \epsilon^{\prime}=\frac{Q}{\text { jj } \omega_{0}} \text { is perrithwy of earth. }
$$

\# In our case medium \hat{y} is air, $\therefore E=$ Er medium 2 is earth, $\therefore \epsilon_{2}=\epsilon^{1}=\left(\epsilon+\frac{G}{1 \omega_{0}}\right)$

$$
\begin{equation*}
\therefore R_{n}=\frac{E_{r}}{E_{i}}=\frac{\sqrt{\epsilon_{r}} \cos \theta_{1}-\sqrt{\epsilon^{1}-\epsilon_{r} \sin ^{2} \theta_{1}}}{\sqrt{\epsilon_{r}} \cos \theta_{1}+\sqrt{\epsilon^{1}-\epsilon_{r} \sin ^{2} \theta_{1}}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \theta_{1}=90-\psi_{1} \\
& \cos \theta_{1}=\cos \left(90-\psi_{1}\right)=\sin \psi_{1} \\
& \sin \theta_{1}=\sin \left(90-\psi_{1}\right)=\cos \psi_{1}
\end{aligned}
$$

And

Then, dividing en (2) by $\sqrt{\epsilon}$ on numerator k denominator.

$$
\begin{aligned}
& R_{n}=\frac{E_{r}}{\epsilon_{i}}=\frac{\cos \theta_{1}-\sqrt{\epsilon_{1}} \epsilon_{r}-\sin ^{2} \theta_{1}}{\cos \theta_{1}+\sqrt{\epsilon_{1} / \epsilon_{r}-\sin ^{2} \theta_{1}}} \\
& \therefore R_{n}= \frac{\sin \psi_{1}-\sqrt{\left(\epsilon_{r} e^{-}-j x\right)-\cos ^{2} \psi_{1}}}{\sin \psi_{1}+\sqrt{\left(\epsilon_{r e}-j x\right)-\cos ^{2} \psi_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon^{\prime}=\epsilon+\frac{\sigma^{\prime}}{j_{0}} \\
& \frac{\epsilon^{\prime}}{\epsilon_{r}}=\frac{\epsilon}{\epsilon_{r}}+\frac{\sigma}{j u_{0} \epsilon_{r}} \\
& \therefore \frac{\epsilon^{\prime}}{\epsilon_{r}}=\epsilon_{\text {rel }} \frac{j \varepsilon^{\prime}}{w 0 \epsilon_{r}} \\
& \text { ore }=\text { relative permittivity } \\
& \epsilon_{\epsilon-1}=\epsilon_{\text {ven }}-j x \quad, x=\frac{C}{100 \epsilon_{r}}
\end{aligned}
$$

Case 2" Vertical polarization
When electric field sector is perpendicular to boundary forface and magnetic fold vector parc

* We have,

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}
$$

* Applying bound ary condition antre tangential component of E along the boundary

$$
\begin{aligned}
& \left(E_{i}-E_{r}\right) \cos \theta_{1}=E_{t} \cos \theta_{2} \\
& \therefore \frac{E_{t}}{E_{i}}=\left(1-\frac{E_{r}}{E_{i}}\right) \frac{\cos \theta_{1}}{\cos \theta_{2}}
\end{aligned}
$$

\# From the conservation of energy (As in case 1)

$$
\begin{aligned}
& 1-\frac{E_{1}^{2}}{E_{i}^{2}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{E_{t^{2}}}{E_{i}^{2}} \frac{\cos \theta_{2}}{\cos \theta_{1}} \\
& 1-\left(\frac{E_{r}}{E_{i}}\right)^{2}=\sqrt{\frac{\epsilon_{2}}{\theta_{1}}} \cdot\left(1-\frac{E_{r}}{E_{i}}\right)^{2} \frac{\cos \theta_{1}}{\cos \theta_{2}} \\
& \left(1+\frac{E_{r}}{E_{i}}\right)=\sqrt{\frac{\epsilon_{2}}{E_{1}}}\left(1-\frac{E_{r}}{E_{i}}\right) \frac{\cos \theta_{1}}{\cos \theta_{2}} \\
& \frac{E_{r}}{E_{i}}\left(1+\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\cos \theta_{1}}{\cos \theta_{2}}\right)=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \frac{\cos \theta_{1}}{\cos \theta_{2}}-1 \\
& \frac{E_{r}}{G_{i}}=\frac{\sqrt{\epsilon_{2}} / \epsilon_{1} \frac{\cos \theta_{1}}{\cos \theta_{2}}-1}{\sqrt{\epsilon_{2}} \frac{\cos \theta_{1}}{\cos \theta_{2}}+1}
\end{aligned}
$$ $\frac{E_{r}}{E_{i}}=R_{v}$, where R_{v} is vertical reflection coff

$$
\begin{aligned}
& \therefore R_{v}=\frac{\sqrt{\epsilon_{2}} \cos \theta_{1}-\sqrt{\epsilon_{1}} \cos \theta_{2}}{\sqrt{\epsilon_{2}} \cos \theta_{1}+\sqrt{\epsilon_{1}} \cos \theta_{2}} \quad=\quad \\
& \because R_{v}=\frac{\sqrt{\epsilon_{2}} \cos \theta_{1}-\sqrt{\epsilon_{1}\left(1-\sin ^{2} \theta_{2}\right)}}{\sqrt{\epsilon_{2}} \cos \theta_{1}+\sqrt{\epsilon_{1}\left(1-\sin ^{2} \theta_{2}\right)}} \quad \because \cos \theta_{2}=\sqrt{1-\sin ^{2} \theta_{2}}
\end{aligned}
$$

$$
k_{v}=\frac{v \epsilon_{2} \cos \theta_{1}-v \epsilon_{1}-\frac{\epsilon_{1}}{\epsilon_{2}} \sin ^{2} \theta_{1}}{\sqrt{\epsilon_{2} \cos \theta_{1}+\frac{\epsilon_{1}^{2}}{\epsilon_{2}} \sin ^{2} \theta_{1}}} \quad\left[\because \frac{\sin \theta_{1}}{\sin \theta_{2}}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}\right.
$$

- dividing by ϵ_{i} and muthplying by $\sqrt{\epsilon} 2$

$$
R_{r}=\frac{\frac{\epsilon_{2}}{\epsilon_{1}} \cos \theta_{1}-\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}+\sin ^{2} \theta_{1}}}{\frac{\epsilon_{2}}{\theta_{1}} \cos \theta_{1}+\sqrt{\frac{\epsilon_{2}}{\theta_{1}}-\sin ^{2} \theta_{1}}}
$$

We have medium 1 is air and medium 2 is earth

$$
\begin{aligned}
& \therefore \epsilon_{1}=\epsilon_{r} \\
& \quad \epsilon_{2}=\epsilon^{\prime}=\epsilon+\frac{\sigma}{j W_{0}} . \\
& \therefore \frac{\epsilon_{2}}{\epsilon_{1}}=\frac{\epsilon^{\prime}}{\epsilon_{r}}=\text { rel } x \quad \text { [as in first cos] }
\end{aligned}
$$

and $\theta_{1}=g o-\psi_{1}$

$$
R_{v}=\frac{\left(\epsilon_{\text {rel }}-j x\right) \sin \psi_{1}-\sqrt{r\left(\epsilon_{r e l}-j x\right)-\cos ^{2} \psi_{)}}}{\left(\epsilon_{\text {rel }}-j x\right) \sin \psi_{1}+\sqrt{\left.\left(\epsilon_{r e l}-j x\right)-\cos ^{2} \psi\right)}}
$$

more the R_{n} or R_{r}, better is the radiation
*DIFFRACTION
then waves pass through shoal opentrg or obstacles The wave deviate from straight line path and enters a region that would otherwise be shadion ed

* Fresnel diffraction or near field diffraction is the diffraction pattern obtained close to diffracting edge.
* Fraunhofer region is the diffraction patter obtained far from the source of diffraction.
Knife edge diffraction
The bending of electromagnetic waves around the obstacles when obstacle acts as sharp edge is known as knife edge diffraction
\longrightarrow direct wave \quad naifecage $T \ldots$ Illuminated region

$$
\text { Pavg }=\frac{r d}{4 r^{2} d^{2}}
$$

Ground wave attenuation factor.
T Te waves which are guided by the conducting surface of the earth along which they propagate are known as ground waves.

* As the waves travel along the ground, they get attenuated. The attenuation of ground wave an they travel along the surface of the earth : proportional to the frequency
t The field strength for ground waves for flat. earth is

$$
E g=\frac{E_{0} A}{d}
$$

where, $E_{0}=$ Ground wave field strength at. Surface of unit distance

$$
A=A+t e n v a t i o n \text { factor which accounts }
$$

Attenuation tor losses in earth surface

$$
d=\text { distance between } T x \& e_{x}
$$

\# The factor A includes losses in the ground and is the function of frequency dielectric constant.

EWECTTOM/AGMETC RROPAGATTON AND ANTENTA

 CHERTER-S

 CHERTER-S

 PROPAGATION TNRADIO FREOUENCK

 PROPAGATION TNRADIO FREOUENCK}

By : Rajan Shama

THE EARTES ATMOSPEERE

The earth's atmosphere is divided into three separate regions, or layers. They are the troposphere, the stratosphere, and the ionosphere.

1. Troposphere

Almost all weather phenomena take place in the troposphere. The temperature in this region decreases rapidly with altitude. Clouds form, and there may be a lot of turbulence because of variations in the temperature, pressure, and density. These conditions have a profound effect on the propagation of radio waves

2. Stratosphere

The stratosphere is located between the troposphere and the ionosphere. The temperature throughout this region is almost constant and there is little water vapor present. Because it is a relatively calm region with little or no temperature change, the stratosphere has almost no effect on radio waves.

3. Ionosphere

This is the most important region of the earth's atmosphere for long distance, point-to-point communications. Because the existence of the ionosphere is directly related to radiation emitted from the sun, the movement of the earth about the sun or changes in the sun's activity will result in variations in the ionosphere. These variations are of two general types: (1) those that more or less occur in cycles and, therefore, can be predicted with reasonable accuracy; and (2) those that are irregular as a result of abnormal behavior of the sun and, therefore, cannot be predicted. Both regular and irregular variations have important effects on radio-wave propagation.

Ionization

In ionization, high-energy ultraviolet light waves from the sun periodically enter the ionosphere, strike neutral gas atoms, and knock one or more electrons free from each atom. When the electrons are knocked free, the atoms become positively charged (positive inns) and remain in space, along with the negatively charged free electrons. The free electrons absorb some of the ultraviolet energy that initially set them free and form an ionized layer.

Rccombination is the reverse process of ionization. Th occurs when free clectrons and positive ions collite, combine, and return the positive ions to their original neutrat state. Like ionization, the recombination process depends on the time of day. Between carly moning and late afternoon, the rate of ionization exceeds the rate of reconbination. During this period the ionized layers reach their greabst density and exert maximum influence on radio waves. However, Guring the late afternoon and carly evening, the rate of recombination excoeds the rate of ionization, causing the densities of the ionized layers to decrease. Throughout the night, density continues to decrease, reaching its lowest point just before sunrise.

Worosphatic Eayers

The ionosphere is composed of three distinct layers, designated from lowest level to highest level (D, E, and F)

In addition, the F layer is divided into two layers, designated F1 (the lower level) and F2 (the higher level).

The presence or absence of these layers in the ionosphere and their height above the earth vary with the position of the sum. At high noon, radiation in the ionosphere above a given point is greatest, while at night it is minimum.

DLAYER.

- Lowest region of ionosphere.
- Ionization in the D layer is low because less ultraviolet light penetrates to this level.
- Disappears at night
- At very low frequencies, the D layer and the ground act as a huge waveguide, making communication possible only with large antemnas and high power transmitters.
- At low and medium frequencies, the D layer becomes highly absorptive, which limits the effective daytime communication range to about 200 miles.
- Signals passing through the D layer normally are not absorbed but are propagated by the E and F layers.

ELAYER.

- Layer next to D layer
- The rate of ionospheric recombination in this layer is rather rapid after sunset, causing it to nearly disappear by midnight.
- The E layer permits medium-range communications on the low-frequency.
- The range of communication in sporadic-E often exceeds 1000 miles, but the range is not as great as with F layer propagation.

2
EPA ; chapter -4 ;Propagation in radio frequency

TIPAYR

- This layer remains all the time irrespective of time.
- During daylight hours, the F layer separates into two layers, F1 and F2.
- During the night, the F1 layer usually disappears
- The F layer produces maximum ionization during the afternoon hours, but the effects of the daily cycle are not as pronounced as in the D and E layers.
- A toms in the F layer stay ionized for a longer time after sunset,
- Since the F layer is the highest of the ionospheric layers, it also has the loingest propagation capability.
- For horizontal waves, the single-hop F2 distance can reach 3000 miles.
- The F layer is responsible for most high frequency, long-distance communications.

MODES OF WAVE PROPAGATION

[2004,2009 PU: Explain different radio wave propagation methods]
The methods by which radio waves propagate from transmitter to receiver can be of following types:

1. Ground wave or surface wave propagation
2. Sky wave propagation or ionospheric propagation
3. Space wave propagation

3

Prepared by: Rajorisharma
$=1$. Gome wo or mone wave monation

- In ground wave propagation a vertically polarized EM wave is radiated at zero or small angle with carth surface. These waves are guided by the conducting surface of the earth along which they are propagated. Such waves are called Ground wave or
 surface wave.
s The ground wave is guided along the surface of the earth just as an electromagnetic wave is guided by a waveguide or transmission line.
- Surface wave permits the propagation around the curvature of the carth.
- The attenuation of ground wave is directly proportional to the frequency of waves. Thus ground wave is applicable in low frequency communication
- Frequency up to 2 MHz
- Example-AM radio

2. Sky wave propagation or ionospheric propagation

- The sky waves are of practical importance at medium and high frequencies for very long distance radio communications.
- Applicable to frequency range of 2 MHz to 30 MHz
- In this mode of propagation
 electromagnetic waves reach the receiving point after reflection from the ionized region in the upper atmosphere called ionosphere
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface.
- Ionosphere contains large concentration of charge gaseous ions, free electrons, neutral molecules etc. These large concentrations tend to bend the passing EM wave through process of refraction.
- The deviation of EM wave depends on frequency, angle of incidence, density of charged particles, thickness of ionosphere etc
- Examples - Military Comm., Amateur radio.

3. Slage wave propagation

- In this mode of propagation, electromagnetic waves from the transmitting antenna reach the receiving antenna either directly or after reflections from the ground.

Transmitting and receiving antemnas must be within line of sight.

- EM waves above 30 MHz are not reflected by the ionosphere. Thus VHF and UHF communication is not possible through ionospheric propagation. So for this type of communication we use Space wave propagation.
a - Frequency above 30 MEHz
- The height of transmitter and receiver can improve the communication.
- Examples: TV, satellite, FM radio.

4. Tropospheric scatter propagation

- This mode uses certain properties of troposphere.
- Troposphere contains certain blocks of high density particles and when EM waves falls on these blocks it gets scattered and reflected to the receiver
- This mode can propagate much beyond than LOS propagation.
- Fonvad scatier propagation on smply propagation is of practical importance at पH: UHi and miorowaves
- It provides relioble communicabion actoss large stretches of water e.g inhand lakes. islands and offshore ishands.
- It also reducos the number of stations required to cover a given large distance as - compared to radio links.

5. Duct propagation [2008 PU short notes]

- It is also known as super refraction
- A duct is something that will confine whatever is traveling along it into a narrow 'pipe'.
- The atmosphere can assume a structure that will produce a similar effect on radio waves. When a radio wave enters a duct it can travel with low loss over great distances. The atmosphere will then act in the manner of a giant optical fiber, trapping the radio wave within the layer of high refractive index.
- A wave trapped in a duct can travel beyond the radio horizon with very little loss.
- In atmosphere the air is frequently turbulent and there are layers of air one above another having different temperature and water vapor contents.
- When layers of warm air form above layers of cold air, the condition known as temperature inversion develops. This phenomenon causes ducts or channels to be formed, by sandwiching cool air either between the surface of the earth and a layer of warm air, or between two layers of warm air. if the radio wave enters the duct at a very low angle of incidence, VHF and UHF transmissions may be propagated far beyond normal line-ofsight distances (thousand of KMs).
- These long distances are possible bectuse of the different denșities and refractive qualities of warm and cool air. The sudden change in densities when a radio wave enters the warm air above the duct causes the wave to be refracted back toward earth. When the wave strikes the earth or a warm layer below the duct,

Figure 1-14.-Duct effect caused by temperature imersion. it is again reflected or refracted upward and proceeds on through the duct with a multiplehop type of action.

PROPAGATION OREAD WAVES THROUGH GONOCPYENE
m IT EETLECTTON BY IONOSBULEEE IVVUIMEI
$[2006,2006,2007,2009,2010 \mathrm{PV}$, Derive Refractive index of Ionosphere and MOT]

t In Ionosphere the angle by which the waken deviates depends upon the following

1. Frequency of Radio wave
2. Angle of incidence al who wave enters the ionosphere
3. Density of charged particles in the ionosphere a_{s}.

Fret Electric field of value
$E=$ Emsinut (V / m) is acting on a cubic meter of space of ionosphere
Force exerted $=-e E$ Newton
Again $F=m a$

$$
-e t=m \frac{d v}{d t}
$$

where

$$
\begin{aligned}
& m=\text { ross of } e^{-} \\
& e=\text { charge of } e^{-}
\end{aligned}
$$

$$
\begin{aligned}
(v e l o c i t y) & \theta
\end{aligned}=-\int \frac{e E}{m} d t
$$

 current distribution by nepectron anovin y with instaran velocity θ is.

$$
\begin{align*}
i e & =-M e Q_{i} \\
& =-N e \frac{e E_{m} \operatorname{coswt}}{\therefore i e}=\frac{-N e^{2}}{m u} \cos \cos
\end{align*}
$$

which shows ie lags behind by 90°. Thus this current is Inductive.
theside this, usual capacible current ic exists

$$
\begin{aligned}
& i_{c}=\frac{d D}{d t}=\frac{d(\epsilon 0 t)}{d t}=\epsilon_{0} d / d\left(\epsilon_{0} \sin \omega t\right) \\
& \therefore i c=\epsilon_{0} \omega \operatorname{tros} \cos \omega t
\end{aligned}
$$

How, Total current $i=i c+i e$

$$
i=\omega E_{m} \cos \omega t\left[E_{0}-\frac{N e^{2}}{m \omega^{2}}\right]
$$

\# The term $\left[\mathrm{E}_{0}-\frac{\mathrm{Ne}^{2}}{m w^{2}}\right]$ is effective dielech'C
constant of ionosphere. $\therefore \epsilon=\epsilon 0-\frac{N e^{2}}{m \omega^{2}}$ H Relative dielectric constant,

$$
\epsilon_{r}=\frac{\epsilon}{\epsilon_{0}}=1-\frac{v e^{2}}{m w^{2} \in 0}
$$

Now,

$$
\begin{aligned}
& \text { Thus we gel, }
\end{aligned}
$$

This is the required expression for refractive Indene of ionosphere.
F" If $\left(1-\frac{g i n}{f^{2}}\right)$ is we ie >0 there will be refrachon of Equal
If $\left(1-8, r^{\prime} p^{2}\right)$ is we i.e<0, Em wave will be reflected back to ert
If $\left(1-81 \mathrm{~N} / p^{2}\right)=0$, neither reflection nor refract o, it will dissipa in ionised ky

- The lower the frequency of a radio wave, the more rapidly the wave is refracted by a given
- degrec of ionization.
- : Figue shows three separate waves of differing frequencies entering the ionosphere at the same angle. The $5-\mathrm{MiHz}$ wave is refracted
 quite sharply, while the $20-\mathrm{MHz}$ wave is refracted less sharply and returns to earth at a greater distance than the $5-\mathrm{MHz}$ wave. Notice that the $100-\mathrm{MHz}$ wave is lost into space.
- For any given ionized layer, there is a maximum frequency at which the wave can be reflected back to earth at vertical incidence. This frequency is called the critical frequency.
- Critical frequency f_{c} corresponds to the maximum electron density $N_{\text {max }}$
- We have,

$$
\mu=\frac{\sin i}{\sin r} \sqrt{1-\frac{\sigma_{2}}{p} N}
$$

By definition, $\mathrm{i}=0, \mathrm{~N}=\mathrm{Nmax}$ and $\mathrm{f}=\mathrm{f}_{\mathrm{c}}$

$$
\mu \frac{\sin O}{\sin r} \sqrt{f-\frac{81 N_{\max }}{f_{c}}}=0
$$

$$
f_{c}=\sqrt{81 \sqrt{m a x}}
$$

CRTTICAL ANGLE

- When a radio wave encounters a layer of the ionosphere, that wave is returned to earth at the same angle (roughly) as its angle of incidence.
- Figure shows three radio waves of the same frequency entering a layer at different incidence angles. The angle at which wave A strikes the layer is too
 nearly vertical for the wave to be refracted to earth, However, wave B is refracted back to earth.
- The angle between wave \dot{B} and the earth is called the critical angle. Any wave, at a given frequency, that leaves the antenna at an incidence angle greater than the critical angle will be lost into space. This is why wave A was not refracted. Wave C leaves the antenna at the smallest angle that will allow it to be refracted and still return to earth.
- The critical angle for radio waves depends on the layer density and the wavelength of the signal.

VERT CAL MEIGRT

- Virtual height is the height whioh the wave would reach if it were to propagaie in a straight line in the ionosphere at the speed of light and then be refracted by the plane mirror like surface
- Virtual height is always greater then actual height

MAXIMUM USABLE FREQUENCY [2005,2008,2009 PU]
[2009 PU, Derive expression relating critical frequency and MUF]

- The higher the frequency of a radio wave, the lower the rate of refraction by the ionosphere.
- Therefore, for a given angle of incidence and time of day, there is a maximum frequency that can be used for communications between two given locations. This frequency is known as the MAXMMUM USABLE FREQUENCY (MUF).
- Waves at frequencies above the MUF are normally refracted so slowly that they return to earth beyond the desired location or pass on through the ionosphere and are lost.
- Critical frequency is for vertical incidence whereas MUF is for specific angle of incidence.
- For the sky wave to return to earth, angle of reflection $=90^{\circ}$.
$\mu=\frac{\sin i}{\sin \gamma}=\sqrt{1-\frac{81 N}{f^{2}}}$
or, $\mu=\frac{\sin i}{\sin 90}=\sqrt{1-\frac{81 N_{\max }}{f_{\operatorname{muf}}^{2}}}$:

or, $\sin ^{2} i=1-\frac{81+\sin x}{f^{2}}$
or, $\sin ^{2} i=1-\frac{f_{c}^{2}}{f_{2}^{2}} \quad \because f_{c}=$ critical frequency $=\sqrt{\text { Cr Nena }}$
or, $\frac{i c^{2}}{p_{i n}^{2}}=1-\sin \ln ^{2} i$
or, $\frac{f c^{2}}{f=\cos ^{2} i}=\cos ^{2}$
$\therefore f_{m u f}=f_{c} s e c i \quad$ This is known as Secant law.

LOWEST USABLE FREQUENCY

- Just as there is a MUF that can be used for communications between two points, there is also a minimum operating frequency that can be used known as the LOWEST USABLE FREQUENCY (LUF).
- As the frequency of a radio wave is lowered, the rate of refraction increases. So a wave whose frequency is below the established LUF is refracted back to earth at a shorter distance than desired, as shown in figure.
- As a frequency is lowered, absorption of the radio wave increases. A wave whose frequency is too low is absorbed to such an extent that it is too weak for reception.

- Atmospheric noise is also greater at lower frequencies. A combination of higher absorption and atmospheric noise could result in an unacceptable signal-to-noise ratio.
- For a given angle, ionospheric conditions, of incidence and set of the LUF depends on the refraction properties of the ionosphere, absorption considerations, and the amount of noise present.

OPTIT UMSABLE FEEOURNCE [2007 PU]

- In practical radio communication for satisfactory reception of signal at receiving point it is essential that the frequency should be less than MUF and more than LUF such that absorption of waves by ionosphere be small.
- It should be high enough to avoid the problems of multipath fading, absorption, and noise encountered at the lower frequencies; but not so high as to be affected by the adverse effects of rapid changes in the ionosphere.
* A frequency that meets the above criteria is known as the OPTIMUM WORKING FREQUENCY
- The Optimum Working Frequency is roughly about 85% of the MUF, but the actual percentage varies and may be considerably more or less than 85 percent.

SIIP LISTANCE [2006,2008 PU]

- The skip distance is the distance from the transmitter to the point where the sky wave first returns to the earth. i.e it is the nearest distance from the transmitter where the receiver can be placed.
- The skip distance depends on the wave's frequency and angle of incidence, and the degree of ionization.
- The skip zone is a zone of silence between the point where the ground wave is too weak for reception and the point where the sky wave is first returned to earth.
- The outer limit of the skip zone varies considerably, depending on the operating frequency, the time of day, the season of
 the year, sumspot activity, and the direction of transmission.

Fealculation of MuF and SKIp Distance
CASE: Assuming Earth to be flat
We have formula,

$$
f_{\text {roup }}=f_{c r} \sec i
$$

Here,

$$
\begin{aligned}
\tan i & =\frac{D / 2}{n}=\frac{D}{D h} \\
\therefore f_{\text {mu }} & =f\left(r \sqrt{1+\tan ^{2} i}\right. \\
f_{m u f} & =f\left(r \sqrt{1+(D / 2 n)^{2}}\right.
\end{aligned}
$$

Ald Skip distance.

$$
D=2 n \sqrt{\frac{f^{2}+\rho}{f_{c r}^{2}}-1}
$$

CASE 2: When Earth is considered to be curve
Then

$$
f_{\text {muf }}=f_{\text {cr }} \sqrt{\frac{D^{2} / 4+\left[n+D^{2} / 8 R\right]^{2}}{\left(n+D^{2} / 8 R\right)^{2}}}
$$

And
skip distance is

$$
D=2\left[\left(h+\frac{D^{2}}{8 l}\right) \sqrt{\frac{f_{m}^{2}}{f_{c i}^{2}}-1}\right]
$$

Q The reflection takes place at a height of 350 kr and maximum density in the ionosphere corresponds to a 0.75 Refractive index at 10 MHz . What is the range for which MUF is 12 MHz . (Assume the eaithto be flat
Sol

$$
\begin{aligned}
& u=\sqrt{1-\frac{81 N_{r a s e}}{f^{2}}} \\
& 0.75=\sqrt{1-\frac{810000 x}{\left(10 \times 10^{6}\right)^{2}}} \\
& \therefore \text { max }=0.54 \times 10^{12} \\
& f_{c i}=\sqrt{81 N \operatorname{Nax}} \\
& =\sqrt{81 \times 0.54 \times 10^{12}} \\
& =6.61 \times 10^{6} \\
& =6.61 \mathrm{MHZ}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\text { Range, } D & =2 h \sqrt{\frac{f_{m}^{2}, p}{f_{c}^{2}}-1} \\
& =2 \times 350000 \sqrt{\frac{12^{2}}{6 \cdot 61^{2}}-1} \\
& =1.06 \times 10^{6} \mathrm{~m} \\
& =1060 \mathrm{~km} .
\end{aligned}
$$

2007. An Ionosphere has max e densify 9×10. Virtual height sep layer is 125 km . For flat earth Find riff or Rx situated cit 100 km distance.
Son

$$
\begin{aligned}
& \text { Given, }=9 \times 10^{12} \\
& h=12.5000 \mathrm{~m} \\
&: \quad D=100.000 \mathrm{~m}
\end{aligned}
$$

We have, $f_{c r}=\sqrt{8 \text { IN rate }}=2.7 \times 10^{7} \mathrm{~Hz}=27 \mathrm{MHz}$

$$
D=2 n \sqrt{\frac{f_{m u f}^{2}}{f_{c 1}^{2}}-1}
$$

$$
100000=2 \times 125000 \sqrt{\frac{\operatorname{lm}^{2} p_{0}}{27^{2}}-1}
$$

$$
0 \cdot 4=\sqrt{\frac{\rho^{2} \operatorname{m}_{1}}{27^{2}}-1}
$$

$$
\therefore f_{\text {muff }}=29.0798 \mathrm{Mnz}
$$

TREGGULAR VARIATMOMEIP IONOSPHERE

- The ionosphere is highly dependent on the sun and hence its conditions vary continuously.
- The variations may be of regular and irregular type.
- Ionospheric predictions are therefore needed in planning of communication system.
- The irregular variations in the ionosphere are caused by following :

1. Gaseous movements
\Rightarrow The ionospheric layers are by no means stable.
$>$ Strong horizontal and vertical movements of the gaseous masses causes the fluctuations in all kind of observations.
2. Sudden Ionospheric Distubances (SLD) [vvimp, almost every year asked in PU] We \Rightarrow The occurrence of SID is caused by a bright solar eruption producing an unusually intense burst of ultraviolet light that is not absorbed by the F1, F2, or E layers. Instead, it causes the D-layer ionization density to greatly increase.
> As a result, frequencies above 1 or 2 megahertz are unable to penetrate the D layer and are completely absorbed.
$>$ Commonly known as SID, these disturbances may occur without warning and may last for a few minutes to several hours.
$>$ When SID occurs, long-range HF communications are almost totally blanked out. The radio operator listening during this time will believe his or her receiver has gone dead.

3. Ionospheric Storms

$>$ Ionosphere storm is concernéd with many other solar and terrestrial phenomenons like magnetic storm.
$>$ Cause of these storms is thought to be the emission of bursts of charged particle from the sun.
$>$ The storms affect mostly the F2 layer, reducing its ion density and causing the critical frequencies to be lower than normal.
$>$ What this means for communication purposes is that the range of frequencies on a given circuit is smaller than normal and that communications are possible only at lower working frequencies.
\geqslant This phenomenon lasts for several days at a time.
4. Polar cap absorption
\Rightarrow Occuring only in polar regions during a period of sun spot.
5. Sporadie E
\geqslant Irregular cloud-like patches of unusually high ionization, called the sporadic E, often forms near the normal Elayer.
\Rightarrow Their exact cause is not known and their occureence cannot be predicted.

- Sporadic E can appear and disappear in a short time cluring the day or night and usually does not occur at same time for all transmitting or receiving stations.

$$
\text { - EPA; chapter-4;Propagation in radiofrequency }=\frac{1 \%}{16} \div-\quad \text { Prepared by: Ciajan Shama }
$$

- $>$. The spondic Etayer can be so thin that radio waves penctate it earily and are returned to carth by the upper layers, or it can be heavily ionized and extend up to several hundred miles into the ionosphere.
- This condition may be either harmful or helpful to radio-wave propagation.
or On the haminul side, sporidic E may blank out the use of highor more favorable tayers or cause additional:absorption of radio waves at some frequencies. It can also cause additional multipath problems and delay the arrival times of the rays of RF energy.
F On the helpful side, the critical frequency of the sporadic E can be greater than double the critical frequency of the normal ionospheric layers. This may permit long-distance communications with unusually high frequencies. It may also permit short-distance communications to locations that would normally be in the skip zone.

Formula for VHE propagation (los)
(Range of space wave propagation)
th Space wave communication takes place upto the los dist This distance clepends on the height of Transmitting and receiving antennas.
\# Let di be distance beth Tx \& Rx . The height of Receiving and transmitting antenna be hr ont.
fir din the figure the cos distance

$$
\begin{aligned}
& d=d_{1}+d_{2} \\
d_{1}= & \sqrt{\left(h_{t}+r\right)^{2}-r^{2}} \\
= & \sqrt{h_{t}^{2}+r^{2}+2 h_{t} r-\gamma^{2}} \\
= & \sqrt{h_{t}^{2}+2 h_{t} r}
\end{aligned}
$$

when $r=$ radius of earth
similarly $=6370 \mathrm{~km}$

$$
\begin{aligned}
d_{2} & =\sqrt{h_{r}^{2}+2 h_{r} r} \\
\therefore d & =d_{1}+d_{2} \\
& =\sqrt{h_{t}^{2}+2 h_{t} r}+\sqrt{h_{r}^{2}+2 h_{r} r} \quad m
\end{aligned}
$$

Since $r \gg$ ht hr

$$
\begin{aligned}
\therefore d & =\sqrt{2 h_{t} r}+\sqrt{2 h_{r} r} \mathrm{~m} \\
d & =\sqrt{2 \gamma}\left(\sqrt{h_{t}}+\sqrt{h_{r}}\right) m
\end{aligned}
$$

\# Using the concept of effective Eqeth Radius.
since the RF waves are refracted in atmosphere, the radio wave travelling horizontally in earth's atmosphere follows a slightly downward curvature path.
\rightarrow It permits the direct rays to reach point slightly beyond the horizon as found by straight linear \Rightarrow Los path:
\rightarrow This effect is obtained by considering an effective radiusof earth which is bit greaten than actual radius
where k is found to be

$$
k=\frac{1}{1-r \frac{d u}{d h}}
$$

The value of $\frac{d u}{d h}$ corresponds to $0.04 \times 10^{-6} / \mathrm{m}$ Rr =6370. putting these values we get,

$$
k=4 / 3
$$

Thus we found d as

$$
\begin{aligned}
d & =\sqrt{2 r^{\prime}}\left(\sqrt{h t}+\sqrt{h_{r}}\right) m \\
& =\sqrt{2 \times 4 / 3 \times 637.000}\left(\sqrt{h_{t}}+\sqrt{h_{r}}\right) m \\
& =4121.48\left(\sqrt{h_{t}}+\sqrt{h_{r}}\right) m \\
d & =4.12\left(\sqrt{h_{t}}+\sqrt{h_{r}}\right) k m
\end{aligned}
$$

ht $\&$ hr in m.

NumERICAL
QA. T.V antenna has a height of 256 on of the receiving antenna has a height of 25 m what is the max distan. through which the $t v$ signal could be received by space wave propagation. What is radio Horizon in this case.
Sol

$$
\begin{aligned}
& d=4.12(\sqrt{n t}+\sqrt{h r}) \mathrm{km} \\
&=4.12(\sqrt{256}+\sqrt{25}) \mathrm{km} \\
& d=86.52 \mathrm{~km} \\
& \begin{aligned}
\text { Radio Horizon }=\sqrt{2 r^{2}} n_{t} & =(4 \cdot 12 \cdot \sqrt{n t}) \mathrm{km} \\
& =4.12 \cdot \sqrt{256} \\
& =65.92 \mathrm{~km}
\end{aligned}
\end{aligned}
$$

"tel Strength space wave

$$
\begin{aligned}
& h_{1}=\text { height } f \text { Tx antenna } \\
& h_{n}=\text { Rx } \\
& d_{1}=\text { distance better } \\
& d_{1}=\text { direct ray path } \\
& d_{2}=\text { indirect }
\end{aligned}
$$

APPROXIMATION
(1) The Reflection is according to rule of geometrical optics
(2) No Earth Loss on reflection
(3) Earth is flat for order of distance considered.

\# The field strength received at the receiving point is the vector sum of the fields of the two rays.
\# From the fig,

$$
\begin{aligned}
& (h t-h r)^{2}+d^{2}=d_{1}^{2} d \\
& (h t+h r)^{2}+d^{2}=d_{2}^{2} \\
\therefore d_{1}= & {\left[d^{2}+(h t-h r)^{2}\right]^{1 / 2} } \\
= & d\left[1+\left(\frac{h t-h r}{d}\right)^{2}\right]^{1 / 2} \\
= & d\left[1+1 / 2\left(\frac{h t-h r}{d}\right)^{2}+\cdots\right] \\
= & d\left[1+1 / 2\left(\frac{h t-h r}{d}\right)^{2}\right] \quad[\because \text { ignoring higher powers }] \\
\therefore d_{1}= & \left.d+\frac{(h t-h r)^{2}}{2 d}\right]
\end{aligned}
$$

Similarly, $d_{2}=d+\frac{\left(h t+h_{r}\right)^{2}}{2 d}$
\# The path difference bet direct \& indirect lay is:

$$
\begin{aligned}
& P \cdot d=d_{2}-d_{1} \\
& P \cdot D=\frac{2 h+h r}{d}
\end{aligned}
$$

H Thu phase difference $=\frac{2 \pi}{C} \times P \cdot D$

$$
\alpha=\frac{4 \pi h+h r}{d r}
$$

\# Beside is 180° phase difference due to reflection from ground.
\therefore Total phase difference, $4=180+\alpha$
 ray at R_{x} antenna, the resultant field strength will be

$$
: E_{T}=E_{0}+E_{R} e^{-j \psi}
$$

* We have assumed that amplitude doesn't decrease on reflection,

$$
\begin{aligned}
& \therefore E_{D}=E_{R}=E_{S} \\
& \therefore E_{T}=E_{S}\left(1+e^{-j \psi}\right) \\
& E_{T}=E_{S}(1+\cos \psi-j \sin \psi) \\
&\left|E_{T}\right|=E_{S} \sqrt{(1+\cos \psi)^{2}-(j \sin \psi)^{2}} \\
&=E_{S} \sqrt{1+\cos ^{2} \psi+2 \cos \psi-t} \sin ^{2} \psi \\
&=E_{S} \sqrt{2+2 \cos \psi} \\
&=E_{S} \sqrt{2(1+\cos \psi)} \\
&=E_{S} \sqrt{2 \cdot 2 \cos \psi / 2} \\
& \left\lvert\, \begin{aligned}
\left|E_{T}\right| & =2 E_{S} \cos \psi / 2
\end{aligned}\right. \\
&\left|E_{T}\right|=2 E_{S} \cos \left(\frac{\alpha+\pi}{2}\right) \\
&=2 E_{S} \cos (\pi / 2+\alpha / 2) \quad[\because \psi=\alpha+\pi) \\
&=2 E_{S} \sin \alpha / 2 \\
&=2 E_{S} \sin \left(\frac{4 \pi h t h r}{2 d r}\right) \quad\left[\because \alpha=\frac{4 \pi h \in h r}{d \pi}\right] \\
&=2 E_{S} \sin \left(\frac{2 \pi h t h r}{d r}\right)
\end{aligned}
$$

If E_{0} be field strength of ray al unit distance

$$
\left|E_{T}\right|=\frac{2 E_{0}}{d} \sin \left(\frac{2 \pi h t h r}{d c}\right)
$$

Since, $d \gg$ hither

$$
\frac{d \gg h \text { hr }}{1 E_{T}-\frac{4 \pi h h r}{d d^{2}} \quad \quad C=\sin \theta \approx \theta \text {, when } \theta \text { is.smale }}
$$ 22

fig: field strength as a $f x^{n}$ of distance.
多 various considerations in space wave propagation
(1) Effect of Earth Roughness \& iroperfections on field strength ir interface zone.

- due to finite conductivity f earth
- Attenuation more in horizontal polarization
(8) Effect of obstacles.

(3) variation of field strength with height

\#Location of Nulls feraxima depends upon
(a) Height the of TY antenna.
(b) Frequency
(c) clistance.

Field string

It wave propagation depends upon the charge of season atmospheric condition, raining in various then phenomenon

* The path of rag ravelling in the atmosphere deperas on the refractive index (th) of the air:
at In wave propagation the actual refractive index is modified into a new valuer defined a

$$
\begin{aligned}
& 1=(e e-1+h / a) \times 10^{6} \\
& \text { where el }=\text { repachue index } \\
& h=\text { height abovegral } \\
& a=\text { radius of earth. }
\end{aligned}
$$

(a) Standard afro

Caromed based duct

Propagation inside duct

THE TOPICS TATAME ASUDMPUEGM

WAVE POLARETOM

6 Polarization of wave is the orientation of electric field in the certain direction being radiated by the transmitting system..

6 The plane of polarization of a radio wave is the plane in which the E-field propagates with respect to the Earth.
6. The polarization of transmitting antenna and receiving antenna must be the same for maximum signal energy to be induced in receiving system.
क Antenna polarization is an important consideration when selecting and installing antemas. Most wireless communication systems use either linear (vertical, horizontal) or circular polarization.

1. Linear polarization

- If the electric field vector at that point is always oriented along the same straight line then it is called the linear polarization.
- Linear polarization may be horizontally polarized or vertically polarized.
- If the E-field component of the radiated wave travels in a plane perpendicular to the Earth's surface (vertical), the radiation is said to be VERTICALLY Y

EPA ; chapter - 4 ; Propagation in radio frequency

- - If the E-feld propagates in a plate parallel to the Eath's sumace (hovizantal), the radiation is said to be HORIZONTALL Y POI ARIZED.

2. CLRCOLAR BGLARYEATMN

- If the electicic fied vector at that point traces a citcle as a function of time thon it is called circular polarization.
- In circular polarization the electric fiede orientation is not fixed horzontally or vertically but is constantly rotaling.

- Circular polarization is one of the cases of elliptical polarization.

Affantages of circular polarization over linear polarization.

1. Reflectivity:

Radio signals are reflected or absorbed depending on the material they come in contact with. Because linear polarized antemas are able to "attack" the problem in only one plane, if the reflecting surface does not reflect the signal precisely in the same plane, that signal strength will be lost. Since circular polarized antennas send and receive in all planes, the signal strength is not lost, but is transferred to a different plarie and are still utilized.
2. Absorption: As stated above, radio signal can be absorbed depending on the material they come in contact with. Different materials absorb the signal from different planes. As a result, circular polarized antennas give you a higher probability of a successful link because it is transmitting on all planes.

EPA; chapter -4 ;Propagation in radio frequency
3. Phasing Issues:

High-frequency systems (i.e. 2.4 GHz and higher) that use linear polarization typically require a clear line-of sight path between the two points in order to operate effectively. Such systems have difficulty penetrating obstructions due to reflected signals, which weaken the propagating signal. Reflected linear signals return to the propagating antemna in the opposite phase, thereby weakening the propagating signal. Conversely, circularlypolarized systems also incur reflected signals, but the reflected signal is returned in the opposite orientation, largely avoiding conflict with the propagating signal. The result is that circularly-polarized signals are much better at penetrating and bending around obstructions.

4. Multi-path:

Multi-path is caused when the primary signal and the reflected signal reach a receiver at nearly the same time. This creates an "out of phase". problem. The receiving radio must spend its resources to distinguish, sort out, and process the proper signal, thus degrading performance and speed. Linear Polarized antennas are more susceptible to multi-path due to increased possibility of reflection. Out of phase radios can cause dead-spots, decreased throughput, distance issues and reduce overall performance
5. Inclement Weather:

Rain and snow cause a microcosm of conditions explained above (i.e. reflectivity; absorption, phasing, multi-path and line of sight) Circular polarization is more resistant to signal degradation due to inclement weather conditions for all the reason stated above.
6. Line-of-Sight:

When a line-of-sight path is impaired by light obstructions (i.e. foliage or small buildings), circular polarization is much more effective than linear polarization for establishing and maintaining communication links.

FADINGI2006,2008,20099

- When the radio frequency waves travel from transmitter to receiver there will be change in the signal intensity due to different factors and signal gets atenuated. This condition is called fading.
- Fading is the most troublesome and frustrating problem in receiving radio signals. - There are basically 4 types of fading.

1. Interference fading

\$ Interference fading occurs duc to phase interference of two or more waves from same source coming over different paths, producing path difference.
$\$$ Ionosphere disturbances can also cause interference fading.

2. Polarization fading

$>$ The difference in polarization in transmitter and receiver antenna system cause polarization fading
> Polarization fading is rapid at high frequencies
3. Absorption fading
$>$ Absorption fading is the result of absorption of EM waves in the ionosphere.
$>$ Sudden ionospheric disturbances (SID) also results in heavy absorption and extreme fading.

4. Skip fading

7. When the EM waves skip from the ionosphere instead of returning back to the earth it results in skip fading.
ρ Skipping and receiving of signal can take place due to MUF oscillating about actual MUF.
$>$ Skipping is more prominient near sunset or sunrise when ionic density of layers change rapidly.

ASSIGNMENT(Important Questions)

 Lest Mate of submiscion:26 harch, 2012 , (Moralay) 9 AN Sharp. Assignment copied hom triends, incomplete assignmont and late submission will not be conisiciered for evaluation.1. Differentiate between Broadside and End fire array.
2. Plot the radiation pattern for two element array having $d=\lambda$ and $\alpha=0^{0}$
3. Find the expression for effective area of monopole quarter wave antenna.
4. Show that the unattenuated radiation field at the surface of earth of quarter wave monopole is given by $E=(6.14 / \mathrm{r}) \mathrm{V}_{\mathrm{W}} \mathrm{mv} / \mathrm{m}$ where r
is in miles and W in watt. is in miles and W in watt.
5. What are Group, Unit and example.
resultant pattern ? Explain with suitable
6. Obtain the radiation pattern of 8 element uniform array using multiplication of pattern.
7. Derive FRIIS equation and explain is its significance in communication
system?
8. Calculate the
9. Calculate the power received by an receiving antenna of gain 60 dB at a distance of 1.00 km from the transmitting antenna whose gain is 50 dB . The transmitter radiates 100 watt of power at frequency of 1000 MHz .
10. How do transmission loss vary with frequency ? state different cases.
11. Discuss briefly the various modes of wave propagation.
12. Explain in detail about tropospheric scattering.
13. Derive Attenuation factor for ionospheric propagation.
14. If the reflection takes place at a height of 200 km and maximum density Assuming the earth to be flat what will be the range for which maximum usable frequency is 13 MHz .
15. Discuss the wave bending phenomenon through ionosphere.
16. How signal is transmitted through optical fibre? Why is it preferred over other cable for signal transmission?
:

CHAPTER-5 MNTRODUCTMON TO OPTICAL RHBES

By Pagan Shamme

\checkmark Optic Fiber is the transparent material, along which we can transmit light.
\checkmark Fiber opties is the system, or branch of engineering concerned with using the optic fibers. Optic fiber is therefore used in a fiber optic system.

ADVANTAGES OH OPTICAL EHBERS (PU EXAM)

1. Immunity from electrical interference

Optic fibers can run comfortably through areas of high level electrical noise such as near machinery and discharge lighting.

2. No crosstalk

When copper cables are placed side by side for a long distance, electromagnetic radiation from each cable can be picked up by the others and so the signals can be detected on surrounding conductors. This effect is called crosstalk. In a telephone circuit it results in being able to hear another conversation in the background. Crosstalk can easily be avoided in optic fibers even if they are closely packed.
3. Glass fibers are insulators

Being an insulator, optic fibers are safe for use in high voltage areas. Thoy will not cause any arcing and can be connected between devices which are at different electrical potentials.
 of incidence and refraction respectively.

CEDICALAPGLE

When light travels from more dense medium to less dense medium ($\mathrm{m}_{1}>\mathrm{B}_{2}$) as shown in fig As the angle of incidence in the first material is increased, there will come a time whon, cyentually, the angle of refaction reaches 90° and the light is refracted along the houndary between the two materials. The angle of incidence which results in this effect is called the criteal angle.

We can calculate the value of the critical angle by assuming the angle of refraction to be 90°

From Snell's law:

$$
n_{1} \sin \theta_{c}=n_{2} \sin 90^{\circ}
$$

$$
\theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)
$$

θ_{c} is the critical angle.

TOTAE MTEEHAL RETLECTION

When light travel from denser to raver medium, At angles of incidence less than the critical angle, the ray is refracted normally. However, if the light approaches the boundary at an angle greater than the critical angle, the light is actually reflected from the boundary region back into the first material. The boundary region simply acts as a mirror. This effect is called total internal reflection (TIR).

An optical ther is a thin, flexible, transparent fibor that acts as a "light pipe", to transmit light between the two ends of the fiber. Optical fiber typically consists of a transparent core surrounded by a transparent cladding inaterial with a lower index of refraction. Light is kept in the core by total interinal reflection. This causes the fiber to act as a waveguide.

The basic structure of an optical fiber consists of three parts;

1. the core,
2. the cladding, and
3. the coating or buffer.

- The basic structure of an optical fiber is shown in figure.
 the core of the fiber. The core is generally mate of gass with refactive index n.
- The core is sumounded by a layer of matoral called the chading. The cladding layer is made of a delectric material with an index of refaction n. The index of refraction of the cladding materal is less than that of the cere material. The oladding is gencraby mate of glass or plastio
- For extra protection, the cladding is enclosed in an additional layer called the coating or buffer. The coating or bufler is a layer of material used to protect an optical fiber from physical damage. The material used for a buffer is a type of plastic.

Fig : typical size of optical fiber

- The angle σ_{A} in the Figure is called the Acceptance Angle
©. Any light entering the fibre at less than this angle will meet the cladding
 at. an angle greater than critical angle.
- If light meets the inner surface of the cladding (the core - cladding interface) at greater than critical angle then TIR occurs. So all the energy in the ray of light is reflected back into the core and none escapes into the cladding. The ray then crosses to the other side of the core and, because the fiber is more or less straight, the ray will meet the cladding on the other side at an angle which again causes Tip. The ray is then reflected back across the core again and the same thing happens.
- In this way the light travels its way along the fiber. This means that the light will be transinitted to the end of the fiber.

1
 ACCEPTAMCRANGLE (PU EXAM)

- It is the angle of incidence that causes TIR inside the fiber. It is the conical half angle as shown in fig. and the acceptance angle in the figure is 14.18°
- It is denoted by B_{A}

Con of acceptance

The cone of acceptance is the angle within which the light is accepted into the core and is able to travel along the fiber with TIR.

This sjreading effect is called dispersion

Ray B will arive firs

The pulse sprearls oul

The effect of dispersion is as shown in fig:

Dispersion has crused the pulses fo meige

How to overcome intermodal dispersion?

1 Using Graded index fiber

This design of fiber eliminates about 99% of intermodal dispersion.
The solution to our problem is to change the refractive index progressively from the center of the core to the outside. If the core center has the highest refractive index and the outer edge has the least, the ray will increase in speed as it moves away from the center.

2 Single mode (SM) fiber

A light source produces light of a mariy wavelength. In fact it produces a range of wavelengths. Even though it is far fewer for LASER than is produced by the LED

This is unfortunate as each component wavelength travels at a slightly different speed in the fiber: This causes the light pulse to spread out as it travels along the fiber - and hence causes dispersion. The effect is called chromatic dispersion.

HOSSES TN OPTCAL FBER (PU EVAM)

1. Absorpion losses

Any impurities that remain in the fiber after manufacture will block some of the light energy. The worst culprits are hydroxyl ions and traces of metals.

2. Rayleigh scatter

This is the scattering of light due to small localized changes in the refractive index of the core and the cladding material.

3. Fresnel reflection

This loss is due to the reflection from the entrance and exit surface of the fiber. Special coupling can be applied to remove this loss.
4. Bending losses

A sharp bend in a fiber can cause significant losses as well as the possibility of mechanical failure.

5. Comector: loss
6. Splice loss

Draw the biock diagram of opticar fiber communication system and explain each block in brief [2005,2006,2006,2007 PU] 201 \&

Fig: Basic Block diagram of optical communication system

Irammaton source

It is the source of infomation to be transmitted over the channel.

Dedcal Transmiter

- The role of an optical transmitter is to convert the electrical signal into optical form and to launch the resulting optical signal into the optical fiber.
- Figure shows the block diagram of an optical transmitter. It consists of an optical source, a modulator, an a channel coupler.
- Semiconductor lasers or light-emitting diodes are used as optical sources because of their compatibility with the optical-fiber communication channel.

Compoants of an optical mansmitex:

- The optical signal is generated by modulating the optical carrier wave.
- The output of a semiconductor optical source can be modulated directly by varying the injection current. Such a scheme simplifies the transmitter design and is generally cost-effective.
- The coupler is typically a microlens that focuses the optical signal onto the entrance plane of an optical fiber with the maximum possible efficiency.

Ophical chamel Commenication chanme

The role of a communication channel is to transport the optical signal from transmitter to receiver without distorting it. Most light wave systenis use optical fibers as the communication channel because silica fibers can transmit light with losses as small as 0.2 $\mathrm{dB} / \mathrm{km}$.

Omtical Lemiver

- An optical receiver converts the optical signal received at the output end of the optical fiber back into the original electrical signal.
- Fig shows the block diagram of an optical receiver. It consists of a coupler, a photodetector, and a demodulator.
- The coupler focuses the received optical signal onto the photodetector.
- Semiconductor photodiodes are used as photodetectors because of their compatibility with the whole system.
- The design of the demodulator depends on the modulation format used by the lightwave system.
- Most lightwave systems employ a scheme referred to as "intensity modulation with direct detection" (IM/DD). Demodulation in this case is done by a decision circuit that identifies bits as 1 or 0 , depending on the amplitude of the electric signal.

v
 DPMEALHGET GOURCES ($P U$ E<oNM)

LED(Light Emiting Diode) AND LASER (Light Amplification by Stimulated Emission of Radiation) are the devices that are used widely as a optical sources.

Light sources must have following properties to be used in optical communication system.

- Must have compatible size and configuration to effectively launch light into an optical fiber.
- Emit light at wavelength where fiber has low losses and low dispersion.
- Must have high intensity light output.
- Their light must be nearly monochromatic as much as possible.
- Allow direct modulation over wide bandwidth.

TED

- A light-emitting diode (LED) is a semiconductor light source.
- Modern versions of LEDs are available across the visible, ultraviolet, and infrared wavelengths, with very high brightness.
- When a light-emitting cliode is forward-biased (switched on), electrons are able to recombine with electron holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of the semiconductor.
- The LED consists of a chip of semiconducting material doped with impurities to create a p-n junction. As in other diodes, current flows easily from the p-side, or anode, to the n-side, or cathode, but not in the reverse direction. Charge-carrierselectrons and holes-flow into the junction from clectrodes with different voltages. Whei an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon.

- A laser is a device that emits light (electromagnetic radiation) through a process of optical anmplification based on the stimulated emission of photons.
" The term "laser" originated as an acronym for Light Amplification by Stimulated Eriission of Radiation.
- Lasers are devices that produce intense beams of light which are monochromatic, and coherent. The wavelength (color) of laser light is extremely pure (monochromatic) when compared to other sources of light.
- Laser beams can be focused to very tiny spots, achieving a very high irradiance. Or they can be launched into a beam of very low divergence in order to concentrate their power at a large distance.
- Works on the principle of stimulated emission.

SPONTAMEOUS AND STIMULATED EMESION

- In general, when an electron is in an excited energy state, it must eventually decay to a lower level, giving off a photon of radiation. This event is called "spontaneous cmission," and the photon is emitted in a random direction and a random phase.
- On the other hand, if an electron is in energy state E 2 , and its decay path is to E1, but, before it has a chance to spontaneously decay, a photon happens to pass by whose energy is approximately E2-E1, there is a probability that the passing photon will cause the electron to decay in such a manner that a photon is emitted at exactly the same wavelength, in exactly the same direction, and with exactly the same phase as the passing photon. This process is called "stimulated emission."

OPTCAS DETECTORS (PUGZAM)

- Optical detectors convert optical signal into an electrical signal.
o Optical detectors are the components that convert the light wave energy of fiber optic communications into electrical signals for recovery of data.
- When light strikes special types of materials, a voltage may be generated, a change in electrical resistance may occur, or electrons may be ejected from the material surface. As long as the light is present, the condition continues. It ceases when the light is turned off. Any of the above conditions may be uised to change the flow of current or the voltage in an external circuit, and hence may be used to monitor the presence of the light and to measure its intensity.
- There are two broad classes of optical detectors: photon detectors and thermal detectors.
- Photon detectors rely on the action of quanta of light energy to interact with electrons in the detector material and to generate free electrons. To produce such effects, the quantum of light must have sufficient energy to free an electron.
- Thermal detectors respond to the heat energy delivered by the light. The response of these detectors involves some temperature-dependent effect, like a change of electrical resistance. Because thermal detectors. rely on only the amount of heat energy delivered.
- The important characteristics of a photo detectors are:
- Be compatible in size to low-loss optical fibers to allow for efficient coupling and easy packaging.
- Have a high sensitivity at the operating wavelength of the optical source.
: Have a sufficiently short response time (sufficiently wide bandwidth) to handle the system's data rate.
E Contribute low amounts of noise to the system.
- Maintain stable operation in changing environmental conditions, such as temperature.

LOSS PROTLE AND ORTICA HWDOW

Optical fiber use mathat

- Below 700 (visible range) \rightarrow Excessive lọs
a Above $1600($ nvisible range $) \rightarrow$ light degenerate into EM wave and lonse photonic property and doesn't follows laws of reflection

High freq(low wavelength) \geqslant high $\mathrm{BW} \rightarrow$ high loss \gg short distance

Windows

- Having decided to use infrared light for (nearly) all communications, we are still not left with an entirely free hand.
- Some wavelengths are not desirable: 1380 nm for example. The losses at this wavelength are very high due to water within the glass. It is a real surprise to find that glass is not totally waterproof. Water in the form of hydroxy! ions is absorbed within the molecular structure and absorbs energy with a wavelength of 1380 mm . During manufacture it is therefore of great importance to keep the glass as dry as possible with water content as low as 1 part in 109.
- It makes commercial sense to agree on standard wavelengths to ensure that equipment from different manufacturers is compatible. These standard wavelengths are called windows and we optimize the performance of fibers and light sources so that they perform at their best within one of these windows.
- The 1300 nm and 1550 nm windows have much lower losses and are used for long distance communications. The shorter wavelength window centered around 850 nm has higher losses and is used for shorter range data transmissions and local area networks (LANs), perhaps up to 10 km or so. The 850 nm window remains in use because the system is less expensive and easier to install.

Prepared by: Rajan sharma:

Leciroragestio Propagator o Antenna
WHRESENT TyPES OF ANTENNAS
By Rayon Shana
क PQLDED DPOLE
H It is a dipole in which two half dipoles, one corthoous and other split at the centre have bee folded and joint together in parallel. The split. dipole is fed al the centre by Transmission tine

- For same powen fed bo both single and folded dipole, signal obtained is found to $b e 4$ times more in folded than in single.
\# power radiated by single dipole,

$$
\left.[\text { Prad }]_{\text {dipole }}=\right]_{\mathrm{rms}}^{2} \cdot\left[R_{\mathrm{rad}}\right] \text { dipole. }
$$

Power radiated by folded dipole is,

$$
\begin{aligned}
&]^{2} \mathrm{rms} \cdot\left[R_{\mathrm{rad}}\right] \text { folded }=4 \times I^{2} \mathrm{rms} \cdot\left[R_{\text {rad }}\right] \text { dipole } \\
& \therefore[\text { Read }] \text { folded }=4 \cdot[\text { brad }] \text { dipole } \\
& =4 \times 73 \Omega \\
& =292 \Omega
\end{aligned}
$$

YA YAGI-UDA ANTENNA
2005, 2006, 2009: What is Active P parasitic element discuss in detail about yagi-uda amen
Discuss the working principle of Vagiuda Antenna. HIt is an array of arrive elements and one or more passive or parasitic elements.

* Driven Element/Active Element
\rightarrow Direct current is fed to this element.

fig: 7 element Yagiuda
* Parasitic element
\rightarrow current are not fed directly in parasitic elements but current flows due to routual induction
\Rightarrow Parasitic elements acquire their currents frond mutual induction.
\rightarrow Parotic elements in the direction of beam are called directors and those in the baturard directions are called reflectors.
* Yagi-uda antenna works as an end fire array. ie. there exists progressive phase different between array elements.

H -DESIGN
thength of dipole is set at slightly less than ri/? ic 0.95 d to 0.49 d to make is resonant o so that ilp impedarice be purely resistive.
\# Length of directors are made 5% sroallen than dipole ie 0.4 to 0.44 N
\# only one Reflector is used and its length is 5% longer than dipole ie $0.5-0.54$ d
\# separation between directors is typically o.3-0. 4 , and reflector is kept at a distance of 0.25 r

偾 working Principle

* Since length of each director is smaller than its corresponding resonating length, impedence of each will be capacitive resulting current to lead.
\# The impedance of reflector will be inductive since it is longer in length. So phase of current lags
\# The total phase of the currents in directors \& reflectors is not solely by their lengths but also by their separation to the adjacent elements
\# Thus properly spaced elements with their length slightly less than their ooresponding resonant length will act as director, since they form an array with currents approximately equal in magnitude E with equal progressive phase shift requ for formation of end fire andy.
\# Similarly a properly spaced element with a length of slightly greaten brill act as refleckro
(2007 2008) What is Freq Trolependent Antemg?
Describe LG y period antenna.
* Log periodic array provides good gain and wide Band id th \# It is Basedon Rumsejs principle

FRumsejs Principle states that the impedance and pattern properties of antenna will be frequency independent if antenna shape is specified in terms of angle.

fig log periodic antema of eris cross connection.
$=\quad$ Flag periodic antenna consists of an array of dipoles extended along a horizontal apus.
The length of each dipole is shorten, than preceding
one
is connected to shortest dipole.
7 Length and spacing of log periodic array are arranged in such a way that adjacent element. seer a constant ra ho fo each after.
$\gamma=\frac{L_{N}}{L_{0} \alpha+1}=\frac{R_{w}}{R_{n+1}}$ r is design ratio fader

* It provides very wide Bandwidth than yogi".
[200 0 molina bog periodic antenna is the sur of mana - separate dipoles each tuned to slightly different frequencies.
\rightarrow Dipole adjacent to one that is resonant at a given frequency acts as a reflectors $\&$ directors
\Rightarrow As frequency of interest shifts, the element acting as driven element changes \& directors and reflectors also changes.
\rightarrow The log periodic antenna can operate oven 4 to 1 or greater freq ratio. i.e. highest usable freq is 4 times the lowest.
* The characteristics of the array fairly remains constant over wide frequency range. so it is
 called frequency independer θ antenna.
＊APERTURE ANTENNA
\＃An antenna having aperture with a centare geometrical shape is called apetfore antenna
the aperture maytrake a form of a waveguide or a horn．
F They operate de microwave frequency so referred as microw ave antenna．
\＃They are mostly used in real tiff because：
1．have Large gain
2．Easy to flush mount to the surface of spacecraft or aircraft without disturbing aerodynamics．
3．They are convenient to be covered with dielectrics to protect from unfavourable environmental conditions．
4．They acts as a suitable feeding element． for other antennas like reflector antennas

L HORN ANTENNA（200K 2009）
\＃A horn is a hollow pipe of different cross section which has been tampered to a large opening．
\＃The opening may be a square，rectangular， circular etc
\＃The f xe of horn is to produce uniform phase front with a larger aperture．
井 有e open circuit is a discontinuity which matches to space poorly and beside diffrachon around edges it will provide poor radiation and non directive patter．
In order to overcome it，the mouth of horn antenna is opened out for gradual transformation．
\# Horn Antenna are widely used as antenna at UHF \& 畑icroware fred.
They are often used as feeder for larger antennas such as parabolic antennas

* They can operate over wide range of frequency:

(a) Pyramidal hon.

C circular horn

(b) Conical horn.

(ब) Biconical horn.

* REFLECTOR AN TENN
\# Reflectors are widely used to modify radiation pattern of radiating elements.
For eg the Backward radiation patter from an antenna may be eliminated with a plane sheet reflector of Large dimension.
* Parabolic Reflector is most widely used Reflector in
 communication system.

窕 PARABOLIC ANTENNA. \qquad
FA parabolic antenna is an antenna tho used a parabolic reflect or to direct radio haves.

* It is often called dish antenna.
* Ir consists of parabolic reflector which collects and concentrates an incoming parallel beam of radio waves and focuses them onto. primary antenna placed at its focus.
* The antenna at focus is also kia Feed antems
* Generally Horn antenna can be used as a feed antenna for parabolic antenna.

\# The main advantage of parabolic antenna is its high directivity, large gain, \& narrow beamwidth:
* Parabolic antennas are used as high gain antennas for point to point communication eg. microwave relay link, satellite communication, eff.
WORKING
\# The operating principle of parabolic antenna is that a point source of radio waves al focal point of paraboloid reflector will be reflected into a plane wave beam along the axis af reflector.
conversely an incoming plane wave parallel to the aus will be focused to a fount al the focal point
m Feedbag mechanism of parabolic miens bop
Orion Feed Mechanism/Axid feed Honor feed susteri, the primary source oo active elbert is placed on the focus of parabolic reflector.
tho gage, horn antenna is used

as prana antenna.
H This melanisms bate two disadvantages.
i. The reflected wave by parabolord is blocked by source itself

2. The reflected wave from parabola to source produce interaction e mismatching
H The modification of Front feed is the offanis or offset feed.
G Here the reflector is assymmetrical segronen op paraboloid so the focus of feed antenna are located at one side 7 the dish.
G The propose is ta rove feed structure out A bears path.

(9) Cassegrain Feed Mechanisro
\# Ir cassegrain system active element is placet on the surface of paraboloid rather than focal point

fig: cassegrain fie on focal point, which in turn reflects the signcel to entire dish Surface
Adv: (D)ouercomes problem 9 Front feed
(2) Since source is located outside, it is easien do install e adjust mechanically
Disadr (1) use to reflective surface.

* If concave reflector is used as secondary reflector it is called Gregorian feed mechanism.

