PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact



2010 Colinet et al. JEB.pdf


Preview of PDF document 2010-colinet-et-al-jeb.pdf

Page 1 2 3 4 5

Text preview


4150 H. Colinet, S. F. Lee and A. Hoffmann
shows an expression pattern similar to those of the Hsp genes,
although its expression is particularly high during cold recovery;
knocking down Frost expression results in a loss of recovery
ability in a fashion similar to that observed following Hsp22 and
Hsp23 knockdown (Colinet et al., 2010b). It is unclear whether
these genes affect cold recovery via independent pathways.
Future experiments could aim to simultaneously suppress two or
more of these genes and assay for cold recovery performances.
The molecular mechanisms behind recovery from cold stress are
complex and poorly understood. Genes/proteins involved in
stress responses are conserved in all organisms and are related
to various key functions, such as cell cycle control, protein
chaperoning, DNA stabilization and repair, the removal of
damaged proteins, and certain aspects of metabolism (Kütlz, 2003;
Kütlz, 2005).
In conclusion, this study provides evidence that Hsp22 and Hsp23
are important for chill-coma recovery in adult D. melanogaster. The
mechanisms whereby they influence this trait are still unclear, but
the chaperone products of these genes might target different cellular
and tissue-specific functions important in cold recovery. The role
of other sHsp genes upregulated during cold recovery (Colinet et
al., 2010a) also remains to be explored.
ACKNOWLEDGEMENTS
We are grateful to Phillip Daborn and Philip Batterham for providing access to the
PC2 facility (Melbourne University, Australia), and we thank Steve McKechnie
(Monash University, Australia) for assisting in the importation of fly lines. This
study was supported by Fonds de la Recherche Scientifique – FNRS, the
Australian Research Council via their Discovery and Fellowship schemes, and the
Commonwealth Environmental Research Fund. This paper is number BRC189 of
the Biodiversity Research Centre.

REFERENCES
Azad, P., Zhou, D., Russo, E. and Haddad, G. G. (2009). Distinct mechanisms
underlying tolerance to intermittent and constant hypoxia in Drosophila
melanogaster. PLoS ONE 4, e5371.
Baker, D. A. and Russell, S. (2009). Gene expression during Drosophila
melanogaster egg development before and after reproductive diapauses. BMC
Genomics 10, 242.
Bettencourt, B. R., Hogan, C. C., Nimali, M. and Drohan, B. W. (2008). Inducible
and constitutive heat shock gene expression responds to modification of Hsp70 copy
number in Drosophila melanogaster but does not compensate for loss of
thermotolerance in Hsp70 null flies. BMC Biol. 6, 5.
Bhole, D., Allikian, M. J. and Tower, J. (2004). Doxycycline-regulated overexpression of hsp22 has negative effects on stress resistance and life span in adult
Drosophila melanogaster. Mech. Ageing Dev. 125, 651-663.
Chown, S. L. and Terblanche, J. S. (2006). Physiological diversity in insects:
ecological and evolutionary contexts. Adv. Insect Physiol. 33, 50-152.
Clark, M. S. and Worland, M. R. (2008). How insects survive the cold: molecular
mechanisms-a review. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 178,
917-933.
Colinet, H. and Hoffmann, A. (2010). Gene and protein expression of Drosophila
Starvin during cold stress and recovery from chill coma. Insect Biochem. Mol. Biol.
40, 425-428.
Colinet, H., Nguyen, T. T., Cloutier, C., Michaud, D. and Hance, T. (2007).
Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold
exposure. Insect Biochem. Mol. Biol. 37, 1177-1188.
Colinet, H., Lee, S. F. and Hoffmann, A. (2010a). Temporal expression of heat shock
genes during cold stress and recovery from chill coma in adult Drosophila
melanogaster. FEBS J. 277, 174-185.
Colinet, H., Lee, S. F. and Hoffmann, A. (2010b). Functional characterization of the
frost gene in Drosophila melanogaster: importance for recovery from chill coma.
PLoS ONE 5, e10925.
Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B.,
Kinsey, K., Oppel, S., Scheiblauer, S. et al. (2007). A genome-wide transgenic
RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156.
Doucet, D., Walker, V. K. and Qin, W. (2009). The bugs that came in from the cold:
molecular adaptations to low temperatures in insects. Cell. Mol. Life Sci. 66, 14041418.
Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s swiss army knife.
Genesis 34, 1-15.
Feder, M. E. and Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones,
and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol.
61, 243-282.
Grubor-Lajsic, G., Block, W., Telesmanic, M., Jovanovic, A. and Stevanovic, D.
and Baca, F. (1997). Effect of cold acclimation on the antioxidant defense system of
two larval lepidoptera (noctuidae). Arch. Insect Biochem. Physiol. 36, 1-10.

Gruenewald, C., Botella, J. A., Bayersdorfer, F., Navarro, J. A., Schneuwly, S.
(2009). Hyperoxia-induced neurodegeneration as a tool to identify neuroprotective
genes in Drosophila melanogaster. Free Radic. Biol. Med. 46, 1668-1676.
Hoffmann, A. A. and Shirriffs, J. (2002). Geographic variation for wing shape in
Drosophila serrata. Evolution 56, 1068-1073.
Hoffmann, A. A., Sørensen, J. G. and Loeschcke, V. (2003). Adaptation of
Drosophila to temperature extremes: bringing together quantitative and molecular
approaches. J. Therm. Biol. 28, 175-216.
Hosler, J. S., Burns, J. E. and Esch, H. E. (2000). Flight muscle resting potential and
species-specific differences in chill coma. J. Insect Physiol. 46, 621-627.
Huang, L.-H., Wang, C.-Z. and Kang, L. (2009). Cloning and expression of five heat
shock protein genes in relation to cold hardening and development in the leafminer,
Liriomyza sativa. J. Insect Physiol. 55, 279-285.
Jing, X. H., Wang, X. H. and Kang. L. (2005). Chill injury in the eggs of the migratory
locust, Locusta migratoria (Orthoptera:Acrididae) the time-temperature relationship
with high-temperature interruption. Insect Sci. 12, 171-178.
Joanisse, D. R., Michaud, S., Inaguma, Y. and Tanguay, R. M. (1998). The small
heat shock proteins of Drosophila: developmental expression and functions. J.
Biosci. 23, 101-108.
Kostál, V. and Tollarová-Borovanská, M. (2009). The 70 kDa heat shock protein
assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PLoS
ONE 4, e4546.
Kültz, D. (2003). Evolution of the cellular stress proteome: from monophyletic origin to
ubiquitous function. J. Exp. Biol. 206, 3119-3124.
Kültz, D. (2005). Molecular and evolutionary basis of the cellular stress response.
Annu. Rev. Physiol. 67, 225-257.
Kurapati, R., Passananti, H. B., Rose, M. R. and Tower, J. (2000). Increased hsp22
RNA levels in Drosophila lines genetically selected for increased longevity. J.
Gerontol. Biol. Sci. 55A, B552-B559.
Lee, R. E., Jr (2010). A primer on insect cold-tolerance. In Low Temperature Biology
of Insects (ed. D. L. Denlingerand R. E. Lee, Jr), pp. 3-35. Cambridge: Cambridge
University Press.
Li, A. Q., Popova-Butler, A., Dean, D. H. and Denlinger, D. L. (2007). Proteomics of
the flesh fly brain reveals an abundance of upregulated heat shock proteins during
pupal diapause. J. Insect Physiol. 53, 385-391.
Li, Z. W., Li, X., Yu, Q. Y., Xiang, Z. H., Kishino, H. and Zhang, Z. (2009). The small
heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative
analysis with other insect sHSP genes. BMC Evol. Biol. 9, 215.
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data
using real-time quantitative PCR and the 2(–⌬⌬Ct) method. Methods 25, 402-408.
Michaud, M. R. and Denlinger, D. L. (2004). Molecular modalities of insect cold
survival: current understanding and future trends. Int. Congress Ser. 1275, 32-46.
Michaud, M. R. and Denlinger, D. L. (2010). Genomics, proteomics and
metabolomics: finding the other players in insect cold-tolerance. In Low temperature
biology of insects (ed. D. L. Denlingerand R. E. Lee, Jr), pp. 91-116. Cambridge:
Cambridge University Press.
Michaud, S. and Tanguay, R. M. (2003). Expression of the Hsp23 chaperone during
Drosophila embryogenesis: association to distinct neural and glial lineages. BMC
Dev. Biol. 3, 9.
Michaud, S., Marin, R. and Tanguay, R. M. (1997). Regulation of heat shock gene
induction and expression during Drosophila development. Cell. Mol. Life Sci. 53,
104-113.
Michaud, S., Morrow, G., Marchand, J. and Tanguay, R. M. (2002). Drosophila
small heat shock proteins: cell and organelle-specific chaperones? Prog. Mol.
Subcell. Biol. 28, 79-101.
Morrow, G. and Tanguay, R. M. (2003). Heat shock proteins and aging in Drosophila
melanogaster. Semin. Cell Dev. Biol. 14, 291-299.
Morrow, G., Samson, M., Michaud, S. and Tanguay, R. M. (2004). Overexpression
of the small mitochondrial Hsp22 extends Drosophila life span and increases
resistance to oxidative stress. FASEB J. 18, 598-599.
Morrow, G., Heikkila, J. J. and Tanguay, R. M. (2006). Differences in the chaperonelike activities of the four main small heat shock proteins of Drosophila melanogaster.
Cell. Stress. Chaperones 11, 51-60.
Norry, F. M., Gomez, F. H. and Loeschcke, V. (2007). Knockdown resistance to heat
stress and slow recovery from chill coma are genetically associated in a quantitative
trait locus region of chromosome 2 in Drosophila melanogaster. Mol. Ecol. 16, 32743284.
Parsell, D. A. and Lindquist, S. (1993). The function of heat-shock proteins in stress
tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27,
437-496.
Qin, W., Neal, S., Robertson, R., Westwood, J. and Walker, V. (2005). Cold
hardening and transcriptional change in Drosophila melanogaster. Insect Mol. Biol.
14, 607-613.
Rinehart, J. P. and Denlinger, D. L. (2000). Heat-shock protein 90 is down-regulated
during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains
responsive to thermal stress. Insect Mol. Biol. 9, 641-645.
Rinehart, J. P., Li, A., Yocum, G. D., Robich, R. M., Hayward, S. A. and Denlinger,
D. L. (2007). Up-regulation of heat shock proteins is essential for cold survival during
insect diapause. Proc. Natl. Acad. Sci. USA 104, 11130-11137.
Rojas, R. R. and Leopold, R. A. (1996). Chilling injury in the housefly: evidence for
the role of oxidative stress between pupariation and emergence. Cryobiology 33,
447-458.
Sørensen, J. G. and Loeschcke, V. (2007). Studying stress responses in the postgenomic era: its ecological and evolutionary role. J. Biosci. 32, 447-456.
Sørensen, J. G., Kristensen, T. N. and Loeschcke, V. (2003). The evolutionary and
ecological role of heat shock proteins. Ecol. Lett. 6, 1025-1037.

THE JOURNAL OF EXPERIMENTAL BIOLOGY