PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact

Factors Affecting Disc Flight Collection .pdf

Original filename: Factors Affecting Disc Flight - Collection.pdf
Title: Factors Affecting Disc Flight | inbounds Disc Golf - inFlight Guide Graphic Universal Disc Golf Flight Chart
Author: Levi

This PDF 1.6 document has been generated by PScript5.dll Version 5.2.2 / Acrobat Distiller 11.0 (Windows), and has been sent on pdf-archive.com on 12/08/2015 at 14:20, from IP address 75.183.x.x. The current document download page has been viewed 404 times.
File size: 269 KB (2 pages).
Privacy: public file

Download original PDF file

Document preview

The same disc will fly differently for different throwers and can even fly differently for the same thrower under inconsistent
condi ons. In this regard, actual field experience may deviate from the flight paths shown in this guide. There are many
reasons why this is the case, and while not an exhaus ve list, the following are the most common examples of things that
will impact a disc’s flight path:
Player Arm Speed and Power
The flight paths in the inFlight Guide assume that players have the appropriate arm speed, skill, and power levels necessary
for a disc to achieve the lines shown. For example, for a player that can throw a drive with a maximum distance around 350′
(player A), a disc with a 350′ distance ra ng should correspond to the flight path depicted. On the other hand, if a player is
capable of throwing a drive with a maximum distance of 250′ (player B), it is highly improbable that they will be able to
throw a disc with a distance ra ng of 350′ within that distance range or with the same flight path. To this end, for players
that throw discs at less than the expected speed/power level, the flight will have a higher HST value (e.g. less right‐turning)
and diminished distance. The result will be a final posi on shorter in range and further to the le  on the x‐axis when
compared to the inFlight Guide chart. Likewise, for a player that is capable of throwing a 450′ drive (player C), it is likely that
they will be able to throw a disc with a 350′ distance ra ng much further and with a more pronounced flight path. For
players that throw discs at greater than the expected speed/power level, the flight will have a lower HST value (e.g. more
right‐turning) and extended distance. The result will be a final posi on much greater in range and further to the right on the
x‐axis when compared to the inFlight Guide chart.

Understanding the speed/power requirements necessary for a disc to achieve the lines shown is an important aspect in
interpre ng the flight charts in the inFlight Guide. Using your own maximum drive distance, the following table is a
reference for determining which discs are within your speed/power level. These discs should correspond to the same lines
depicted in the flight charts:

These flight paths will also apply (with some subtle varia on) to a le ‐handed forehand (LHFH) throwing technique. For
players that use a right‐handed forehand (RHFH) or le ‐handed backhand (LHBH) technique, the flight path would be
inverted along the y‐axis with HST indica ng the amount to which a disc banks to the le  and the LSF indica ng the amount
to which a disc hooks to the right.

Release Angle
Anhyzer releases will have the effect of decreasing the HST values, with more of a right‐turning line. Hyzer releases will have
the effect of increasing the HST values, with less of a right‐turning line. Elevated nose angles on release will have a
combined effect of increasing both the HST and LSF, causing a more pronounced fade with reduced distance. Off axis torque
(OAT) occurs when the rota onal force of a disc is not centered on an axis that goes through the center of the disc in a
direc on perpendicular to the flight plate at the  me of release. When the angle of release is lower than angle of the disc,
the disc will tend to have a lower HST value with more of a right‐turning line. When the angle of release is higher than angle
of the disc, the disc will tend to have a higher HST value with less of a right‐turning line.
Plas c
Although not as significant as other factors affec ng disc flight (such as speed/power levels), the type of plas c can
influence how a disc flies. As a general rule, the discs made of more durable (e.g. premium) plas c will have a more
overstable flight and discs made of less durable (e.g. base) plas c will have a less overstable flight. Addi onally, base pas c
will tend to cut through the air be er than premium plas c and will have a greater distance. To this end, premium plas cs
will have greater HST and LSF values with less of a right‐turning line and decreased distance. Base plas cs will have lower
HST and LSF values with more of a right‐turning line and increased distance.
Tailwinds will tend to push discs forward and have the effect of increasing HST values, with less of a right‐turning line and
the poten al for more distance. Headwinds will tend to push against discs and will have the effect of decreasing HST values,
with more of a right‐turning line. Right‐to‐le  crosswinds will tend to increase both HST and LSF values, pushing down discs
with a lower Net Stability and li ing discs with a higher Net Stability. Le ‐to‐right crosswinds will tend to decrease both HST
and LSF values, li ing discs with a lower Net Stability and pushing down discs with a higher Net Stability.
Disc Weight
Changes in disc weight do not inherently affect the stability of a disc. However, as disc weight decreases, the speed/power
required to throw the disc also decreases and more effort can be put toward throwing the disc. Discs thrown with more
speed/power will have a lower HST value with more of a right‐turning line and increased distance. Discs thrown with less
speed/power have a higher HST value with less of a right‐turning line and decreased distance.
Disc Condi on
As discs wear, these subtle changes to the shape of the disc will impact how the disc flies. A brand new disc will have the
greatest HST and LSF values. As the condi on of the disc decreases, the HST and LSF values will also decrease, resul ng in a
more right‐turning line.
Par ng Line Height
The par ng line is the thin line of plas c that is le  on the outside edge of a disc a er it has been injec on molded and can
be an indicator of disc stability. When comparing two discs of the same mold, all other things being equal, the disc with a
higher par ng line height (PLH) will tend to have a higher Net Stability and will be more overstable. The disc with a lower
PLH will tend to have a lower Net Stability and will less overstable.
Higher air density means discs will slow down faster, but the cruising speed window is lower as well. This means discs will
begin to turn at a lower speed threshold and discs will begin to fade at a lower speed. Lower air density would have the
opposite impact. Discs will maintain speed be er with a higher overall cruising speed window where discs will require more
speed to turn and fade. In very general terms, increases in al tude, temperature, or humidity will tend to make discs less
overstable. In the same fashion, decreases in al tude, temperature, or humidity will tend to make discs more overstable.

Factors Affecting Disc Flight - Collection.pdf - page 1/2
Factors Affecting Disc Flight - Collection.pdf - page 2/2

Related documents

factors affecting disc flight collection
7edref v6
the coasting manifesto
the coasting manifesto
the coasting manifesto
the coasting manifesto

Related keywords