MAT1120 Linear Algebra .pdf

File information


Original filename: MAT1120___Linear_Algebra.pdf

This PDF 1.5 document has been generated by TeX / pdfTeX-1.40.15, and has been sent on pdf-archive.com on 16/09/2015 at 19:53, from IP address 37.191.x.x. The current document download page has been viewed 906 times.
File size: 150 KB (2 pages).
Privacy: public file


Download original PDF file


MAT1120___Linear_Algebra.pdf (PDF, 150 KB)


Share on social networks



Link to this file download page



Document preview


MAT1120 - Linear Algebra
Teodor Spæren
September 2015

1

Oppgave 1

Er gitt matrisen



P =



1.0
0
0
0
0

0.7
0
0.3
0
0

0
0
0.5
0
0 0.65
0.5
0
0 0.35

0
0
0
0
1.0








Skal beregne P k for k ∈ {2, 3, 4, 40, 80} og angi hva sannsynligheten er for at
systemet g˚
ar fra tilstand s4 til s2 i løpet av henholdsvis 2, 3, 4, 40 og 80 tidsskritt.
Bruker følgende matlab script for ˚
a gjøre dette:
P = [1 0.7 0 0 0; 0 0 0.5 0 0; 0 0.3 0 0.65 0; 0 0 0.5 0 0; 0 0 0 0.35 1];
for k = [2 3 4 40 80]
% P^k
pk = P^k
% This is the probability
round(pk(2,4),5)
end
P k blir da



P2 = 




P4 = 


P 80



=


1.0
0
0
0
0

0.7
0.15
0
0.15
0

0.35
0
0.475
0
0.175

1.0
0
0
0
0

0.805
0.07125
0
0.07125
0.0525

1.0
0
0
0
0

0.9
0
0
0
0.1

0
0.325
0
0.325
0.35

0.5163
0
0.2256
0
0.2581

0.6667
0
0
0
0.3333

0
0
0
0
1.0

0.2275
0.1544
0
0.1544
0.4637

0.4333
0
0
0
0.5667

0
0
0
0
1.0







,




P3 = 


0
0
0
0
1.0






1




,



P 40



=


1.0
0
0
0
0

0.805
0
0.1425
0
0.0525

1.0
0
0
0
0

0.9
0
0
0
0.1

0.35
0.2375
0
0.2375
0.175

0.6667
0
0
0
0.3333

0.2275
0
0.3088
0
0.4637

0.4333
0
0
0
0.5667

0
0
0
0
1.0

0
0
0
0
1.0












og pk24
p224 = 0.3250,

2

p324 = 0,

p424 = 0.1544,

p40
24 = 0,

p80
24 = 0

Oppgave 2

For ˚
a finne basisen for Nul(P − I5 ), ved ˚
a omgjøre matrisen [(P − I5 ) 0] til
redusert trappeform. Dette gjøres med matlab med kommandoen rref([(Peye(5)) zeros(5,1)]), noe som gir:



[(P −I5 ) 0] ∼ 



0
0
0
0
0

0.7
−1.0
0.3
0
0

0
0.5
−1.0
0.5
0

0
0
0
0
0.65 0
−1.0 0
0.35 0

gjør vi om dette til parameter form, f˚
ar vi:

x1
is




 x2 =
x3 =


x4 =



x5
is

0
0
0
0
0





 
 
∼
 
 

0
0
0
0
0

1.0
0
0
0
0

0
1.0
0
0
0

0 0
0 0
1.0 0
0 0
0 0

0
0
0
0
0

free
0
0
0
free

Fra dette kan vi se at enhver basis for Nul(P − I5 ) kan skrives som
 x1 
 x1 + x5 


0




0
β=




 x0
5

x1 + x5

a er det enkelt ˚
a se at P ikke er regulær da det ikke finnes en entydig likevektsvektor. Det at P ikke er regulær kunne vi ha misstenkt fra kalkulasjonene v˚
are
i Oppgave en, da selv for høye verdier av k var ikke P k strengt positiv. Dette er
derimot ikke nokk for ˚
a konkludere med at P ikke er regulær, da vi m˚
atte ha
sjekket for alle k ∈ N.

2









Document preview MAT1120___Linear_Algebra.pdf - page 1/2

Document preview MAT1120___Linear_Algebra.pdf - page 2/2

Related documents


mat1120 linear algebra
orientering om prosjekt hele
solving the procrastination puzzle gn
dypt arbeid av cal newport
the practicing mind gn
gr7b

Link to this page


Permanent link

Use the permanent link to the download page to share your document on Facebook, Twitter, LinkedIn, or directly with a contact by e-Mail, Messenger, Whatsapp, Line..

Short link

Use the short link to share your document on Twitter or by text message (SMS)

HTML Code

Copy the following HTML code to share your document on a Website or Blog

QR Code

QR Code link to PDF file MAT1120___Linear_Algebra.pdf