PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact



Comput Theor Chem 970, 2011, 15 22 .pdf


Original filename: Comput Theor Chem 970, 2011, 15-22.pdf

This PDF 1.4 document has been generated by LaTeX with hyperref package / StampPDF Batch 3.0 Windows SPDF_1085 Oct 13 2003, and has been sent on pdf-archive.com on 06/11/2015 at 19:46, from IP address 71.17.x.x. The current document download page has been viewed 563 times.
File size: 355 KB (9 pages).
Privacy: public file




Download original PDF file









Document preview


This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution
and sharing with colleagues.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.
In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information
regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright

Author's personal copy

Computational and Theoretical Chemistry 970 (2011) 15–22

Contents lists available at ScienceDirect

Computational and Theoretical Chemistry
journal homepage: www.elsevier.com/locate/comptc

Thermochemistry of mono- and disubstituted acetylenes and polyynes at the
Gaussian-4 level of theory
Sierra Rayne a,⇑, Kaya Forest b
a
b

Ecologica Research, Kelowna, British Columbia, Canada V1Y 1R9
Department of Chemistry, Okanagan College, Penticton, British Columbia, Canada V2A 8E1

a r t i c l e

i n f o

Article history:
Received 15 January 2011
Received in revised form 11 May 2011
Accepted 12 May 2011
Available online 17 May 2011
Keywords:
Acetylenes
Enthalpy of formation
Adiabatic ionization energy
Gaussian-4 (G4)

a b s t r a c t
Gas phase enthalpies of formation at 298.15 K and 1 atm (Df H ðgÞ ) and adiabatic ionization energies (AIEs)
were calculated at the Gaussian-4 (G4) level of theory for a suite of mono- and disubstituted acetylenes
and polyynes. Df H ðgÞ were estimated for 167 acetylene derivatives, of which only 16 had previously
reported experimental values. Of the 122 acetylenes with G4 estimated AIEs, 30 compounds had available
experimental characterization for comparison. Excellent agreement with thermochemical accuracy was
obtained between G4 Df H ðgÞ and AIEs and corresponding high quality experimental data and prior
high-level theoretical estimates. The findings extend the existing thermochemical database on this
important class of compounds to a range of derivatives without prior high level theoretical calculations
or experimental reports.
Ó 2011 Elsevier B.V. All rights reserved.

Alkynes have a rich and diverse chemistry that includes numerous applications in the fields of polymer, combustion, and materials science as well as synthetic and bioorganic applications [1].
Despite their importance, few derivatives of acetylene have been
fully characterized using experimental thermochemical methods
owing to challenges regarding synthesis, purification, and stability.
In the current Communication, we present the results of a high level composite method theoretical study into the gas phase thermochemistry of 167 mono- and disubstituted acetylenes and polyynes
(Tables 1–4).
Calculations were conducted using the Gaussian-4 (G4) method
[2] in Gaussian 09 (G09) [3]. Enthalpies of formation (Df H ðgÞ ; at
298.15 K and 1 atm via the atomization energy approach) and adiabatic ionization energies (AIEs) were calculated using standard
methods [4–7]. Gabedit v.2.3.0 was used for geometry visualizations [8]. G4 Df H ðgÞ and AIE estimates are expected to achieve or exceed criteria for chemical accuracy [2,9–11]. The cationic forms of
45 compounds either did not converge at the G4 level or contained
imaginary frequencies, and thus were omitted from the AIE analysis. Full G09 archive entries including optimized geometries and
energies at each stage of the composite method process are provided in the Supplementary materials. In each table, G4 Df H ðgÞ
and AIE estimates are compared to other theoretical estimates
and available experimental data in the literature.
Of the 167 acetylene derivatives for which Df H ðgÞ were calculated at the G4 level, Golovin and Takhistov [12] have correspond⇑ Corresponding author. Tel.: +1 250 487 0166.
E-mail address: rayne.sierra@gmail.com (S. Rayne).
2210-271X/$ - see front matter Ó 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comptc.2011.05.018

ing Df H ðgÞ estimates for 44 compounds. The mean signed (MSD),
mean absolute (MAD), and root mean squared (RMSD) deviations
between the G4 Df H ðgÞ and those of Golovin and Takhistov [12]
are 13.5, 35.1, and 45.6 kJ/mol, with a maximum absolute deviation of 143.1 kJ/mol (difluoroacetylene). The large Df H ðgÞ discrepancy between our G4 data and the estimated value from the
Golovin and Takhistov [12] dataset for difluoroacetylene likely
arises from these other authors using the anomalous experimental
Df H ðgÞ of 190.0 ± 30.0 kJ/mol [13] to parametrize their modeling
approach, rather than the more recent (and probably more accurate) reviewed value of 20.9 kJ/mol [14]. Excluding difluoroacetylene, there still remain large deviations between the G4 and
Golovin and Takhistov [12] Df H ðgÞ datasets (e.g., an absolute difference of 92.2 kJ/mol for H(C„C)6H). For the 16 compounds with
experimental Df H ðgÞ , MSD, MAD, and RMSD between the G4 and
either the single experimental Df H ðgÞ or the average of multiple
experimental Df H ðgÞ (excluding the 190.0 ± 30.0 kJ/mol [13] datapoint for difluoroacetylene, which is clearly in gross error) are 6.3,
11.3, and 16.8 kJ/mol, respectively, with a maximum absolute deviation of 51.5 kJ/mol (ethynol).
Among the 122 acetylenes with G4 estimated AIEs, 30 derivatives have corresponding experimental values of varying quality.
MSD, MAD, and RMSD between the G4 and either the single experimental AIE or the average of multiple experimental AIEs are 0.03,
0.13, and 0.24 eV, respectively, with a maximum absolute deviation of 0.79 eV (Si(C„CH)4). If the best agreement between the
G4 AIE estimate and a single experimental value is used for the error metrics, the MSD, MAD, and RMSD are reduced to 0.00, 0.08 and
0.18 eV, respectively. For the five compounds with NIST evaluated

Author's personal copy

16

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22

Table 1
Estimated gas phase (298.15 K, 1 atm) enthalpies of formation (Df H ðgÞ ) and adiabatic ionization energies (AIEs) for various monosubstituted acetylenes of the general form
HC„CAR at the Gaussian-4 (G4) level of theory.
Compound

Df H ðgÞ (kJ/mol)

AIE (eV)

G4

Golovin
and
Takhistov
[12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

HC„CAH

228.4
[9,10]

n/a

226.7 [14],
227.4 ± 0.8 [38],
226.7 ± 0.8 [39]

11.42

11.23 [40], 11.26 [40], 11.43
[40], 8.76 [31], 8.14 [31], 11.10
[31], 11.32 [31], 10.64 [19], 11.7
[41], 11.4 [41], 11.5 [41], 11.6
[41], 11.5 [41], 11.0 [41], 11.4
[41]

11.400 ± 0.002 [42]

HC„CALi
HC„CABeH
HC„CABH2
HC„CABHCH3
HC„CABHF
HC„CABF2
HC„CABHCl
HC„CABCl2
HC„CABHBr
HC„CABBr2
HC„CACH3

284.8
314.7
275.2
204.5
123.6
537.1
102.1
61.7
172.6
80.3
185.2
[9,10]

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
185.4 ± 0.8 [39]

8.79
11.01
10.72
n/ca
11.26
11.47
10.93
n/c
10.51
10.57
n/c

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
10.9 [41], 10.9 [41], 10.6 [41],
10.9 [41], 10.7 [41], 10.7 [41],
10.4 [41]

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
10.36 ± 0.01 [42,48]

HC„CACH2CH3

166.8

n/a

165.2 ± 0.9
166.1 ± 2.1
163.5 [28],
[28], 165.9
165.0 [43],
[43]

n/c

10.8 [41], 10.8 [41], 10.5 [41],
10.8 [41], 10.6 [41], 10.7 [41],
10.2 [41]

10.18 ± 0.01 [42]

HC„CACH(CH3)2

139.6

138.1

136.4 ± 2.1 [39],
131.3 [28], 136.3
[28]

10.02

n/a

9.97 [50],
10.05 ± 0.02 [51],
10.049 ± 0.007 [52]

HC„CAC(CH3)3

106.0

n/a

229.7 [18], 239.7 [19], 229.7 [20],
224.3 [20], 231.4 [20], 233.5 [20],
235.6 [20], 228.7 [21], 229.7 [22],
231.0 [22], 230.1 [22], 226.8 [23],
236.3 [24], 235.3 [24], 216.3 [25],
227.9 [26], 226.8 [27], 232.6 [28],
227.2 [28], 235.6 [29], 236.2 [29],
228.8 [29], 229.5 [29], 230.0 [29],
212.7 [29], 234.8 [29], 228.5 [29],
229.2 [29], 229.8 [29], 228.1 [29],
239.7 [30], 190.0 [31], 239.7 [31],
237.1 [31], 227.6 [32], 234.7 [33],
227.1 [34], 233.5 [5], 242.2 [35],
229.3 [35], 212.2 [35], 215.6 [35],
199.1 [35], 202.1 [35], 244.0 [35],
264.1 [35], 263.5 [35], 260.9 [35],
248.7 [35], 250.2 [35], 234.6 [36],
231.0 [36], 228.8 [36], 227.6 [36],
227.6 [37]
289.1 [33]
331.4 [33]
289.5 [33]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
185.8 [18], 183.8 [43], 186.7 [43],
187.7 [21], 179.5 [22], 181.0 [22],
180.2 [22], 182.6 [28], 184.0 [28],
184.5 [44], 182.4 [44], 186.6 [32],
183.8 [34], 185.2 [2], 191.2 [5],
264.4 [45], 195.8 [45], 95.4 [45],
169.0 [45], 192.9 [45], 92.9 [45],
177.8 [45], 173.2 [35], 181.6 [35],
168.3 [35], 162.1 [35], 172.0 [35],
175.2 [35], 189.8 [35], 204.8 [35],
203.4 [35], 202.3 [35], 192.7 [35],
196.1 [35], 204.6 [35], 192.9 [35],
191.2 [35], 194.1 [35], 182.8 [35],
192.0 [36], 186.2 [36], 185.3 [36],
186.5 [36], 183.5 [46], 184.1 [46],
217.6 [47], 197.1 [47], 210.5 [47],
189.5 [47], 192.0 [47], 185.4 [47]
166.9 [32], 165.0 [34], 151.2 [35],
156.9 [35], 149.3 [35], 139.5 [35],
154.5 [35], 156.6 [35], 166.9 [35],
182.3 [35], 181.2 [35], 180.4 [35],
171.8 [35], 176.6 [35], 175.2 [36],
167.3 [36], 167.6 [36], 166.5 [36],
168.8 [36], 164.7 [46], 165.3 [46],
216.3 [47], 190.0 [47], 199.6 [47],
172.8 [47], 174.9 [47], 167.4 [47]
137.7 [32], 157.9 [35], 141.8 [35],
139.3 [35], 128.5 [35], 110.4 [35],
126.5 [35], 129.7 [35], 141.9 [35],
156.5 [35], 155.8 [35], 148.1 [35],
153.1 [35], 149.6 [36], 139.4 [36],
141.0 [36], 136.9 [36], 137.1 [46],
138.1 [46]
105.4 [32], 148.0 [35], 129.1 [35],
105.7 [35], 74.7 [35], 89.7 [35],
95.7 [35], 116.7 [35], 134.5 [35],
131.6 [35], 131.1 [35], 124.2 [35],
128.0 [35], 117.8 [36], 105.5 [36],
108.3 [36], 108.0 [36], 103.3 [46],
104.8 [46]

106.7 [53],
107.0 ± 1.3 [54],
106.1 [55], 89.8
[28], 102.3 [28]

9.86

n/a

9.86 [56],
9.80 ± 0.05 [15],
9.92 ± 0.02 [51],
9.923 ± 0.010 [52],
10.67 ± 0.02 [16],
10.31 ± 0.04 [57]

[49],
[39],
164.6
[21],
165.5

Author's personal copy

17

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22
Table 1 (continued)
Compound

Df H ðgÞ (kJ/mol)

AIE (eV)

G4

Golovin
and
Takhistov
[12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

HC„CAC6H5

317.4

328.0

309.2
309.8
322.4
326.0

306.6 ± 1.7 [58]

8.84

n/a

n/a
n/a
n/a

n/a
n/a
n/a

10.87
11.60
11.88

n/a
n/a
n/a

167.4
n/a
133.9
219.7
n/a
n/a
326.4
n/a
n/a
102.5

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

10.71
n/c
n/c
10.50
n/c
n/c
11.09
11.73
12.13
10.71

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

372.0
248.9
271.4
254.8
352.0
448.1
385.6
514.7
282.1
93.1
112.0
236.3
262.7
276.7
106.8

360.7
225.9
n/a
184.1
n/a
n/a
n/a
n/a
202.9
n/a
n/a
n/a
n/a
n/a
25.1

354.0 [71]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
41.6 [73]
n/a
n/a
n/a
n/a
125.5 [14]

n/c
8.90
9.45
10.34
9.01
9.10
8.87
8.84
n/c
10.02
n/c
10.72
10.09
9.84
11.25

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

HC„CANa
HC„CAMgH
HC„CAAlH2
HC„CASiH3
HC„CASiH2CH3
HC„CASiH(CH3)2
HC„CASi(CH3)3

294.2
53.0
299.7
231.5
166.8
100.0
31.2

n/a
n/a
n/a
215.5
n/a
n/a
16.7

380 [70], 384.9 [33]
249 [72], 254.4 [33]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
95.0 [33]
n/a
n/a
n/a
n/a
105.6 [74], 103.8 [20], 97.9 [20],
104.6 [20], 104.2 [20], 101.7 [20],
101.7 [20], 100.8 [20], 102.9 [20],
62.8 [75], 117.8 [23], 105.2 [26],
117.8 [27], 105.2 [30], 106.3 [33]
n/a
n/a
n/a
241.0 [33]
n/a
n/a
n/a

8.82 ± 0.02 [59],
8.825 ± 0.001 [60],
8.82 ± 0.08 [13], 8.9
[61], 8.75 [62],
8.815 ± 0.005 [63]
n/a
11.6 ± 0.1 [64]
11.96 ± 0.02 [65],
11.83 [66]
10.68 [67]
n/a
n/a
10.48 [67]
n/a
n/a
n/a
n/a
n/a
10.62 ± 0.15 [68],
10.8 [69]
11.62 ± 0.03 [42]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
9.48 [42]
n/a
n/a
n/a
11.26 [42]

HC„CACH2F
HC„CACHF2
HC„CACF3

22.2
187.4
422.3

20.9
213.4
464.4

HC„CACH2Cl
HC„CACHCl2
HC„CACCl3
HC„CACH2Br
HC„CACHBr2
HC„CACBr3
HC„CACH2CN
HC„CACH(CN)2
HC„CAC(CN)3
HC„CACHO

180.6
173.8
172.0
232.9
282.3
338.5
348.3
538.4
749.7
131.0

HC„CACN
HC„CANH2
HC„CANHF
HC„CANF2
HC„CANHCl
HC„CANCl2
HC„CANHBr
HC„CANBr2
HC„CANO2
HC„CAOH
HC„CAOCH3
HC„CAOF
HC„CAOCl
HC„CAOBr
HC„CAF

n/a
n/a
n/a
n/a
n/a
n/a
n/a

8.29
n/c
10.52
n/c
10.44
10.04
9.63

n/a
n/a
n/a
n/a
n/a
n/a
n/a

HC„CASiH2F
HC„CASiHF2
HC„CASiF3
HC„CASiH2Cl
HC„CASiHCl2
HC„CASiCl3
HC„CASiH2Br
HC„CASiHBr2
HC„CASiBr3
HC„CAPH2
HC„CAPHCH3
HC„CAP(CH3)2
HC„CAPHF
HC„CAPF2
HC„CAPHCl
HC„CAPCl2
HC„CAPHBr
HC„CAPBr2
HC„CASH
HC„CASCH3
HC„CASF

164.0
583.0
1005.6
60.1
117.3
293.4
128.1
21.5
83.8
252.8
213.4
165.8
23.0
352.9
166.9
64.4
221.5
178.6
256.8
235.9
126.3

n/a
n/a
983.2
n/a
138.1
301.2
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
256.9 [33]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
264.0 [33]
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

10.98
11.31
11.59
10.90
n/c
10.93
10.79
10.28
n/c
9.34
8.66
8.14
9.53
10.03
9.31
9.37
9.24
9.20
9.49
8.87
9.48

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

[35],
[35],
[35],
[35],

320.0
317.2
335.1
327.1

[35], 312.4 [35],
[35], 314.0 [35],
[35], 331.5 [35],
[35]

n/a
n/a
n/a
n/a
n/a
n/a
9.7 [17],
10.40 ± 0.02 [16],
9.9 ± 0.1 [76],
10.14 ± 0.04 [57]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
8.3 [77]
n/a
(continued on next page)

Author's personal copy

18

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22

Table 1 (continued)

Df H ðgÞ (kJ/mol)

Compound

a

AIE (eV)

G4

Golovin
and
Takhistov
[12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

HC„CASCl
HC„CASBr
HC„CACl

257.9
297.3
227.4

n/a
n/a
190.4

n/a
n/a
213.8 [14]

9.30
9.20
10.59

n/a
n/a
n/a

n/a
n/a
10.60 ± 0.02 [42]

HC„CABr

282.5

242.7

n/a
n/a
226.4 ± 10 [38], 215.1 [25], 229.4
[26], 231.1 [29], 225.9 [29], 229.9
[29], 227.9 [29], 212.3 [29], 212.1
[29], 225.4 [29], 223.5 [29], 225.0
[29], 222.8 [29], 229.6 [29], 226.6
[29], 231.4 [29], 229.5 [29], 213.8
[29], 227.1 [29], 225.5 [29], 226.7
[29], 224.8 [29], 231.0 [33]
n/a

269.0 ± 6.3 [78]

10.36

n/a

10.31 ± 0.02 [42]

Cation failed to converge without imaginary frequencies.

Table 2
Estimated gas phase (298.15 K, 1 atm) enthalpies of formation (Df H ðgÞ ) and adiabatic ionization energies (AIEs) for various monosubstituted acetylenes of the general form
HA(C„C)nAR (n P 2) at the Gaussian-4 (G4) level of theory.
Compound

H(C„C)2Li
H(C„C)3Li
H(C„C)4Li
H(C„C)2BeH
H(C„C)3BeH
H(C„C)4BeH
H(C„C)2BH2
H(C„C)3BH2
H(C„C)4BH2
H(C„C)2CH3
H(C„C)3CH3
H(C„C)4CH3
H(C„C)2CN
H(C„C)3CN
H(C„C)4CN
H(C„C)3NH2
H(C„C)4NH2
H(C„C)2OH
H(C„C)3OH
H(C„C)4OH
H(C„C)2F
H(C„C)3F
H(C„C)4F
H(C„C)2Na
H(C„C)2MgH
H(C„C)4MgH
H(C„C)2AlH2
H(C„C)3AlH2
H(C„C)4AlH2
H(C„C)2SiH3
H(C„C)3SiH3
H(C„C)4SiH3
H(C„C)2PH2
H(C„C)3PH2
H(C„C)4PH2
H(C„C)2SH
H(C„C)3SH
H(C„C)4SH
H(C„C)2Cl
H(C„C)3Cl
H(C„C)4Cl
H(C„C)2Br
H(C„C)3Br
H(C„C)4Br
a

Df H ðgÞ (kJ/mol)

AIE (eV)

G4

Golovin and Takhistov [12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

497.5
716.4
940.8
540.6
767.1
994.7
500.3
726.2
950.3
413.3
638.5
862.2
601.6
828.3
1052.5
698.5
924.7
323.8
549.2
775.5
344.0
571.6
799.7
503.0
274.6
728.9
523.8
750.8
973.5
457.4
683.8
907.3
478.2
703.5
930.6
482.8
707.6
931.4
457.4
681.9
906.1
510.8
735.2
962.2

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
428.9
673.6
n/a
604.6
849.4
1094.1
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
600 [70]
820 [70]
1050 [70]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/ca
8.00
7.84
9.96
9.39
n/c
n/c
9.27
8.94
n/c
8.99
8.67
10.64
10.01
9.62
n/c
n/c
9.28
8.79
8.54
n/c
9.47
9.09
n/c
n/c
n/c
n/c
9.14
8.84
9.79
9.25
8.92
9.12
n/c
8.61
9.05
n/c
8.40
n/c
n/c
n/c
n/c
9.15
n/c

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
9.50 ± 0.02 [79], 9.4 [80], 9.51 [81], 9.51 [82]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
10.10 [83]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
9.72 ± 0.02 [84]
n/a
n/a
9.59 ± 0.02 [84]
n/a
n/a

Cation failed to converge without imaginary frequencies.

AIEs, the MSD, MAD, and RMSD against the G4 estimates are 0.02,
0.04, and 0.05 eV, respectively.

The G4 AIE estimate of 9.86 eV for HC„CAC(CH3)3 may resolve
the wide experimental differences ranging between 9.80 ± 0.05

Author's personal copy

19

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22

Table 3
Estimated gas phase (298.15 K, 1 atm) enthalpies of formation (Df H ðgÞ ) and adiabatic ionization energies (AIEs) for various disubstituted acetylenes of the general form
RA(C„C)nAR (n P 1) at the Gaussian-4 (G4) level of theory.
Compound

Df H ðgÞ (kJ/mol)
G4

AIE (eV)

Golovin
and
Takhistov
[12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

427.2 [19], 456.1 [43], 453.3 [43], 427.6
[85,86], 443.9 [85,86], 439.3 [87], 463.2
[88], 455.8 [89], 501.7 [88], 459.0 [90],
450 [70], 373.8 [31], 468.4 [31], 435.7
[31], 456.1 [34], 459.3 [2], 431.8 [35],
443.8 [35], 428.7 [35], 417.0 [35], 439.7
[35], 437.7 [35], 481.8 [35], 491.2 [35],
492.0 [35], 489.7 [35], 479.3 [35], 479.8
[35], 470.8 [36], 463.2 [36], 461.9 [36],
439.4 [36], 456.2 [46], 458.5 [46]
613.4 [19], 683.6 [43], 679.9 [43], 670
[70], 547.5 [31], 690.1 [31], 683.6 [34]

464.0 [91]

10.22

9.83 [40], 10.06
[40], 10.22 [40],
9.62 [19], 8.05 [31],
7.43 [31], 9.99 [31],
10.30 [31]

10.17 [83], 10.17 ± 0.02 [51],
10.1 ± 0.1 [92], 10.17 [82],
10.180 ± 0.003 [93],
10.17 ± 0.01 [94], 10.17 ± 0.05
[95], 10.15 ± 0.05 [96]

b

n/ca

9.06 [40], 9.41 [40],
9.57 [40], 9.08 [19],
7.68 [31], 7.06 [31],
9.79 [31]
8.56 [40], 8.98 [40],
9.13 [40], 8.78 [19],
7.45 [31], 6.83 [31],
9.50 [31]
8.21 [40], 8.68 [40],
8.84 [40], 8.60 [19],
9.32 [31]
7.94 [40], 8.47 [40],
8.63 [40], 9.18 [31]
10.3 [41], 10.5 [41],
10.0 [41], 10.3 [41],
10.2 [41], 10.5 [41],
9.6 [41]

9.50 ± 0.02 [51], 9.50 [82],
9.50 ± 0.05 [95], 9.48 ± 0.05
[96]

H(C„C)2H

459.3

472.8

H(C„C)3H

683.4

717.6

H(C„C)4H

911.0

962.3

798.7 [19], 910.1 [43], 906.3 [43], 900
[70], 907.4 [31], 910.1 [34]

n/a

9.16

H(C„C)5H

1133.8

1207.1

984.5 [19], 1120 [70], 1137.3 [34]

n/a

8.91

H(C„C)6H

1359.6

1451.8

1340 [70]

n/a

n/c

145.1 ± 1.0
[49],
148.0 ± 1.5
[39]

9.55

n/a
529.3 [98,99],
533.5 [14]

11.32
11.94

n/a
n/a

n/a
11.81 ± 0.02 [100],
11.81 ± 0.01 [101], 11.4 ± 0.2
[102]

n/a
n/a
20.9 [14],
190.0 ± 30.0
[104]
n/a
n/a
n/a
209.6 [14]

n/c
n/c
11.17

n/a
n/a
n/a

11.2 [103], 11.4 ± 0.2 [102]
n/a
11.18 [83], 11.18 [105]

10.02
9.38
n/c
10.02

n/a
n/a
n/a
n/a

10.05 [83]
n/a
n/a
9.9 [42]

n/a
n/a
n/a

9.35
n/c
9.72

n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a

9.18
8.83
6.76
n/c
9.46

n/a
n/a
n/a
n/a
n/a

9.25 [106], 9.34 ± 0.02 [84]
n/a
9.67 ± 0.01 [107], 9.5 [108],
9.7 ± 0.1 [109], 9.67 [110]
9.6 [106], 9.20 ± 0.02 [84]
n/a
n/a
n/a
n/a

H3CC„CCH3

147.9

n/a

Cl3CC„CCCl3
NCC„CCN

114.8
528.7

n/a
529.3

NC(C„C)2CN
NC(C„C)3CN
FC„CF

752.7
975.7
7.1

n/a
n/a
136.0

F(C„C)2F
F(C„C)3F
F(C„C)4F
ClC„CCl

230.0
458.5
688.8
230.5

n/a
n/a
n/a
173.6

Cl(C„C)2Cl
Cl(C„C)3Cl
BrC„CBr

455.5
680.0
336.3

n/a
n/a
265.7

146.0 [43], 146.6 [43], 147.3 [18], 133.2
[22], 134.6 [22], 134.1 [22], 145.6 [32],
146.0 [34], 154.4 [5], 495.0 [45], 171.1
[45], 19.7 [45], 127.2 [45], 155.6 [45],
5.9 [45], 131.4 [45], 104.2 [35], 133.8
[35], 124.5 [35], 109.2 [35], 146.4 [35],
149.1 [35], 148.5 [35], 148.9 [35], 143.0
[35], 148.0 [35], 150.6 [35], 155.6 [35],
154.4 [35], 158.6 [35], 144.8 [35], 145.2
[46], 146.4 [46], 190.8 [47], 163.2 [47],
175.7 [47], 150.6 [47], 154.4 [47], 149.0
[47]
n/a
529.2 [70], 466.1 [35], 501.2 [35], 535.8
[35], 524.4 [35], 548.3 [35], 541.3 [35],
503.5 [35], 535.5 [35], 540.8 [35], 551.0
[35], 561.9 [35], 556.8 [35],
750 [70]
980 [70]
0.0 [20], 6.7 [20], 0.4 [20], 4.6 [20],
1.7 [20], 2.1 [20], 3.3 [20], 1.3 [20],
0.8 [20], 31.8 [23], 5.8 [26], 31.8 [27]
n/a
n/a
n/a
226.6 ± 14 [38], 235.2 [26], 227.6 [29],
228.4 [29], 234.4 [29], 226.0 [29], 228.7
[29], 233.6 [29], 231.2 [29], 218.3 [29],
205.5 [29], 226.0 [29], 224.4 [29], 224.7
[29], 226.1 [29], 223.8 [29], 223.6 [29],
225.1 [29], 226.7 [29], 231.2 [29], 225.8
[29], 230.1 [29], 236.4 [29], 231.5 [29],
220.2 [29], 208.9 [29], 225.5 [29], 225.9
[29], 227.9 [29], 225.6 [29], 225.4 [29],
226.9 [29]
n/a
n/a
n/a

Br(C„C)2Br
Br(C„C)3Br
LiC„CLi
H3SiC„CSiH3
H3Si(C„C)2SiH3

561.7
787.1
382.9
234.1
456.3

n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a

9.09 ± 0.02 [97], 9.08 ± 0.05
[95], 9.06 ± 0.05 [96]

8.82 ± 0.05 [95], 8.87 ± 0.05
[96]
8.56 ± 0.05 [96]
9.58 ± 0.02 [42]

(continued on next page)

Author's personal copy

20

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22

Table 3 (continued)
Compound

H3Si(C„C)3SiH3
(H3C)3SiC„CSi(CH3)3
Cl3SiC„CSiCl3

Df H ðgÞ (kJ/mol)

AIE (eV)

G4

Golovin
and
Takhistov
[12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

683.6
167.1
812.4

n/a
n/a
830.5

n/a
n/a
n/a

n/a
n/a
n/a

9.02
n/c
11.82

n/a
n/a
n/a

n/a
9.2 [17]
n/a

a

Cation failed to converge without imaginary frequencies.
An enthalpy of formation at 0 K of 669.4 ± 16.7 kJ/mol has been reported [111], in agreement with theoretical calculations predicting a 0 K DfH(g) between 673.6 and
715.5 kJ/mol.
b

Table 4
Estimated gas phase (298.15 K, 1 atm) enthalpies of formation (Df H ðgÞ ) and adiabatic ionization energies (AIEs) for various acetylenes of the general form RA(C„CH)n (n P 2) at
the Gaussian-4 (G4) level of theory.
Compound

a

Df H ðgÞ (kJ/mol)

AIE (eV)

G4

Golovin and
Takhistov [12]

Other theoretical

Expt.

G4

Other theoretical

Expt.

Be(C„CH)2
BH(C„CH)2
B(C„CH)3
CH2(C„CH)2

472.3
458.9
645.7
453.7

n/a
n/a
n/a
437.2

n/a
n/a
n/a
n/a

n/ca
10.52
10.47
10.31

n/a
n/a
n/a
n/a

n/a
n/a
n/a
10.1 [42],
10.27 ± 0.02 [51]

CH(C„CH)3

729.2

682.0

n/a

10.28

n/a

n/a

C(C„CH)4

1010.6

941.4

n/a
n/a
n/a
438.1
450.6
453.5
450.6
450.7
453.2
698.3
723.0
728.0
717.1
717.2
727.3
886.0
926.7

n/a

n/c

n/a

o-C6H4(C„CH)2
m-C6H4(C„CH)2
p-C6H4(C„CH)2
NH(C„CH)2
N(C„CH)3
O(C„CH)2
Mg(C„CH)2
AlH(C„CH)2
Al(C„CH)3
SiH2(C„CH)2
SiH(C„CH)3
Si(C„CH)4
PH(C„CH)2
P(C„CH)3
S(C„CH)2

554.6
553.4
552.2
550.2
859.8
450.7
219.7
471.0
642.3
431.1
628.7
824.2
492.7
731.2
532.3

575.3
573.2
573.2
489.5
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

8.69
8.78
8.57
8.83
8.77
10.03
n/c
10.72
10.58
10.69
n/c
10.55
8.94
8.61
9.11

11.32 [112],
11.16 [112],
10.77 [112]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

[28], 453.5 [28],
[28], 453.1 [28],
[28], 446.9 [28],
[28], 438.1 [28],
[28], 450.4 [28],
[28], 453.3 [28]
[28], 728.0 [28],
[28], 727.6 [28],
[28], 711.7 [28],
[28], 698.3 [28],
[28], 717.7 [28],
[28], 727.9 [28]
[112], 957.2 [112],
[112]

n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a

8.69 ± 0.02 [113]
8.82 ± 0.02 [113]
8.58 ± 0.02 [113]
n/a
n/a
n/a
n/a
n/a
n/a
n/a
n/a
11.34 [16]
n/a
n/a
n/a

Cation failed to converge without imaginary frequencies.

[15] and 10.67 ± 0.02 [16] eV. The actual AIE for this compound is
likely closer to the low end of the experimental range, consistent
with the more recent investigations. Similarly, the G4 AIE of
9.63 eV for HC„CSi(CH3)3 is at the lower end of the experimental
range (9.7 [17] to 10.40 ± 0.02 [16]). In most cases, there appears to
be strong enough agreement between the G4 AIEs and at least one
experimental report for each compound to assist in developing
evaluated AIEs for those molecules where experimental data is
available, and to provide high quality theoretical estimates where
no experimental data has been previously obtained.
Acknowledgements
This work was made possible by the facilities of the Western
Canada Research Grid (WestGrid: project 100185), the Shared
Hierarchical Academic Research Computing Network (SHARCNET:
project sn4612), and Compute/Calcul Canada.

Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.comptc.2011.05.018.
References
[1] P.J. Stang, F. Diederich, Modern Acetylene Chemistry, Wiley, New York, 2008.
[2] L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 theory, J. Chem. Phys.
126 (2007) 84108–84112.
[3] Gaussian 09, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J.
Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.
Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N.
Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E.
Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann,
O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K.

Author's personal copy

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22

[4]

[5]

[6]

[7]

[8]
[9]

[10]
[11]

[12]

[13]
[14]
[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S.
Dapprich, A. D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J.
Fox, Gaussian, Inc., Wallingford CT., 2009.
A. Nicolaides, A. Rauk, M.N. Glukhovtsev, L. Radom, Heats of formation from
G2, G2(MP2), and G2(MP2,SVP) total energies, J. Phys. Chem. 100 (1996)
17460–17464.
L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, Assessment of Gaussian2 and density functional theories for the computation of enthalpies of
formation, J. Chem. Phys. 106 (1997) 1063–1079.
L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, Assessment of Gaussian2 and density functional theories for the computation of ionization potentials
and electron affinities, J. Chem. Phys. 109 (1998) 42–55.
R. Notario, O. Castano, J.L.M. Abboud, R. Gomperts, L.M. Frutos, R. Palmeiro,
Organic thermochemistry at high ab initio levels. 1. A G2(MP2) and G2 study
of cyclic saturated and unsaturated hydrocarbons (including aromatics), J.
Org. Chem. 64 (1999) 9011–9914.
A.R. Allouche, Gabedit: A graphical user interface for computational
chemistry softwares, J. Comput. Chem. 32 (2011) 174–182.
S. Rayne, K. Forest, Estimated gas-phase standard state enthalpies of
formation for organic compounds using the Gaussian-4 (G4) and W1BD
theoretical methods, J. Chem. Eng. Data 55 (2010) 5359–5364.
S. Rayne, K. Forest, Reply to Comments by O.V. Dorofeeva on J. Chem. Eng.
Data 55 (2010) 5359–5364, J. Chem. Eng. Data 56 (2011) 684–685.
S. Rayne, K. Forest, Estimated adiabatic ionization energies for organic
compounds using the Gaussian-4 (G4) and W1BD theoretical methods, J.
Chem. Eng. Data 56 (2011) 350–355.
A.V. Golovin, V.V. Takhistov, Thermochemistry of organic and heteroorganic
species. Part XII. Mono- and disubstituted acetylenes and ethynyl free
radicals. New electronegativity scale, J. Mol. Struct. 701 (2004) 57–91.
S. Elbel, K. Lienert, A. Krebs, H.T. Dieck, Phenylethin – mustersonde fur
substituenteneffekte, Liebigs Ann. Chem. (1981) 1785–1797.
M.W. Chase, NIST-JANAF themochemical tables, J. Phys. Chem. Ref. Data 9
(1998) 1–1951 (fourth ed.).
P. Wolkoff, J.L. Holmes, F.P. Lossing, On the formation of cyclopentenium
cations from all C6 Hþ
10 molecular ion structures, Can. J. Chem. 58 (1980) 251–
257.
D.I. MacLean, R.E. Sacher, A study of some spectroscopic properties of Group
IVA acetylides, J. Organomet. Chem. 74 (1974) 197–204.
H. Matsumoto, K. Akaiwa, Y. Nagai, K. Ohno, K. Imai, S. Masuda, Y. Harada,
Analysis of stereochemical properties of molecular orbitals of
(trimethylsilyl)acetylenes by Penning ionization electron spectroscopy,
Organometallics 5 (1986) 1526–1529.
C.F. Wilcox, S.O. Russo, An improved protocol for the efficient calculation of
accurate enthalpies of formation for C, H, N compounds, Int. J. Chem. Kinect.
33 (2001) 770–774.
M.J.S. Dewar, G.P. Ford, H.S. Rzepa, An MNDO study of the structures,
vibrational frequencies, and ionization energies of the first five poly-ynes,
Chem. Phys. Lett. 50 (1977) 262–265.
N.L. Haworth, M.H. Smith, G.B. Bacskay, J.C. Mackie, Heats of formation of
hydrofluorocarbons obtained by Gaussian-3 and related quantum chemical
computations, J. Phys. Chem. A 104 (2000) 7600–7611.
D.W. Rogers, O.A. Dagdagan, N.L. Allinger, Heats of hydrogenation and
formation of linear alkynes and a molecular mechanics interpretation, J. Am.
Chem. Soc. 101 (1979) 671–676.
W.C. Herndon, Hydrocarbon enthalpies of formation and ab initio
calculations, Chem. Phys. Lett. 234 (1995) 82–86.
D.R. Burgess, M.R. Zachariah, W. Tsang, P.R. Westmoreland, Thermochemical
and chemical kinetic data for fluorinated hydrocarbons, Prog. Energy
Combust. Sci. 21 (1996) 453–529.
B.T. Colegrove, T.B. Thompson, Ab initio heats of formation for chlorinated
hydrocarbons: Allyl chloride, cis- and trans-1-chloropropene, and vinyl
chloride, J. Chem. Phys. 106 (1997) 1480.
C.F. Rodriquez, D.K. Bohme, A.C. Hopkinson, Isomers on the C2H2Cl+ surface.
Calculated enthalpies of formation for unsaturated hydrocarbons and
monochloro derivatives, J. Org. Chem. 58 (1993) 3344–3349.
S. Parthiban, J.M.L. Martin, J.F. Liebman, The heats of formation of the
haloacetylenes XCCY [X, Y = H, F, Cl]: Basis set limit ab initio results and
thermochemical analysis, Mol. Phys. 100 (2002) 453–464.
M.R. Zachariah, P.R. Westmoreland, D.R. Burgess, W. Tsang, C.F. Melius, BACMP4 predictions of thermochemical data for C1 and C2 stable and radical
hydrofluorocarbons and oxidized hydrofluorocarbons, J. Phys. Chem. 100
(1996) 8737–8747.
R. Sumathi, W.H. Green, Missing thermochemical groups for large
unsaturated hydrocarbons: Contrasting predictions of G2 and CBS-Q, J.
Phys. Chem. A 106 (2002) 11141–11149.
L. Zhu, J.W. Bozzelli, Thermodynamic properties of chloroacetylene,
dichloroacetylene, ethynyl radical, and chloroethynyl radical, Chem. Phys.
Lett. 362 (2002) 445–452.
X.M. Zhang, Radical substituent effects of alpha-fluorine and alphatrifluoromethyl groups, J. Org. Chem. 63 (1998) 3590–3594.
R. Zahradnik, L. Sroubkova, Polyacetylenes and cumulenes, potential
elements for molecular machines and precursors of carbon clusters: A
theoretical study, Helv. Chim. Acta 86 (2003) 979–1000.

21

[32] S.W. Benson, L.J. Garland, Thermochemistry of acetylenes and polyacetylenes,
J. Phys. Chem. 95 (1991) 4915–4918.
[33] J.W. Ochterski, G.A. Petersson, K.B. Wiberg, A comparison of model
chemistries, J. Am. Chem. Soc. 117 (1995) 11299–11308.
[34] D.W. Rogers, A.A. Zavitsas, N. Matsunaga, G3(MP2) enthalpies of
hydrogenation, isomerization, and formation of extended linear
polyacetylenes, J. Phys. Chem. A 109 (2005) 9169–9173.
[35] J. Tirado-Rives, W.L. Jorgensen, Performance of B3LYP density functional
methods for a large set of organic molecules, J. Chem. Theory Comput. 4
(2008) 297–306.
[36] M.K. Sabbe, M. Saeys, M.F. Reyniers, G.B. Marin, V. Van Speybroeck, M.
Waroquier, Group additive values for the gas phase standard enthalpy of
formation of hydrocarbons and hydrocarbon radicals, J. Phys. Chem. A 109
(2005) 7466–7480.
[37] S. Rayne, K. Forest, Computational note on a G4MP2 study into the gas phase
enthalpies of formation and isomerization for the (CH)2n (n = 1–6) isomers, J.
Mol. Struct. (Theochem) 948 (2010) 111–112.
[38] J.A. Manion, Evaluated enthalpies of formation of the stable closed shell C1
and C2 chlorinated hydrocarbons, J. Phys. Chem. Ref. Data 31 (2002) 123–172.
[39] D.D. Wagman, J.E. Kilpatrick, K.S. Pitzer, F.D. Rossini, Heats, equilibrium
constants, and free energies of formation of the acetylene hydrocarbons
through the pentynes, to 1500 K, J. Res. NBS 35 (1945) 467–496.
[40] R.I. Kaiser, B.J. Sun, H.M. Lin, A.H.H. Chang, A.M. Mebel, O. Kostko, M. Ahmed,
An experimental and theoretical study on the ionization energies of polyynes
(HA(C„C)nAH; n = 1–9), Astrophys. J. 719 (2010) 1884–1889.
[41] M.P. Repasky, J. Chandrasekhar, W.L. Jorgensen, PDDG/PM3 and PDDG/
MNDO: Improved semiempirical methods, J. Comput. Chem. 23 (2002) 1601–
1622.
[42] S.G. Lias, Ionization energy evaluation, in: P.J. Linstrom, W.G. Mallard, (Eds.),
NIST Chemistry WebBook, NIST Standard Reference Database Number 69,
National Institute of Standards and Technology, Gaithersburg MD, 20899,
<http://webbook.nist.gov>.
[43] D.W. Rogers, N. Matsunaga, F.J. McLafferty, A.A. Zavitsas, J.F. Liebman, On the
lack of conjugation stabilization in polyynes (polyacetylenes), J. Org. Chem.
69 (2004) 7143–7147.
[44] H.L. Woodcock, H.F. Schaefer, P.R. Schreiner, Problematic energy differences
between cumulenes and poly-ynes: Does this point to a systematic
improvement of density functional theory? J. Phys. Chem. A 106 (2002)
11923–11931.
[45] K. Raghavachari, B.B. Stefanov, L.A. Curtiss, Accurate density functional
thermochemistry for larger molecules, Mol. Phys. 91 (1997) 555–559.
[46] D. Bond, Computational methods in organic thermochemistry. 1.
Hydrocarbon enthalpies and free energies of formation, J. Org. Chem. 72
(2007) 5555–5566.
[47] S. Rayne, K. Forest, Gas phase isomerization enthalpies of organic
compounds: A semiempirical, density functional theory, and ab initio postHartree–Fock theoretical study, J. Mol. Struct. (Theochem) 948 (2010) 102–
107.
[48] I.D. Boelpaep, B. Vetters, J. Peeters, Cycloaddition reactions of CF with
unsaturated hydrocarbons. Correlation of activation energies and frequency
factors with the hydrocarbon ionization energies, J. Phys. Chem. A 101 (1997)
787–793.
[49] E.J. Prosen, F.W. Maron, F.D. Rossini, Heats of combustion, formation, and
isomerization of ten C4 hydrocarbons, J. Res. NBS 46 (1951) 106–112.
[50] J.L. Holmes, M. Fingas, F.P. Lossing, Towards a general scheme for estimating
the heats of formation of organic ions in the gas phase. Part I. Odd-electron
cations, Can. J. Chem. 59 (1981) 80–93.
[51] G. Bieri, F. Burger, E. Heilbronner, J.P. Maier, Valence ionization energies of
hydrocarbons, Helv. Chim. Acta 60 (1977) 2213–2233.
[52] P. Carlier, J.E. Dubois, P. Masclet, G. Mouvier, Spectres de photoelectrons des
alcynes, J. Electron Spectrosc. Related Phenomena 7 (1975) 55–67.
[53] A.I. Kupreev, G.S. Shimonaev, Determination of the enthalpies of formation of
liquid acetylenic hydrocarbons, Russ. J. Phys. Chem. 51 (1977) 826–827.
[54] T.V. Siretskaya, V.V. Takhistov, S.M. Pimenova, V.M. Orlov, V.N. Pustobaev,
Formation enthalpies of acetylene ketones fragments in gas phases, React.
Kinet. Catal. Lett. 31 (1986) 15–19.
[55] S.M. Pimenova, M.P. Kozina, G.L. Gal’chenko, T.V. Siretskaya, V.V. Takhistov, T.
S Kuznetsova, M.V. Proskurnina, T.A. Kotel’nikova, Heats of combustion and
formation of some compounds with acetylene bonding, Termodin. Org.
Soedin. (1986) 12–16.
[56] V.M. Orlov, A.M. Boganov, T.V. Siretskaya, V.V. Takhistov, Thermochemical
characteristics of the molecular and fragmentation ions of substituted tertbutylacetylenes, Izv. Akad. Nauk SSSR Ser. Khim. 12 (1985) 2795–2797.
[57] H. Bock, H. Seidl, d-Orbital effects in silicon substituted p-electron systems.
Part XII. Some spectroscopic properties of alkyl and silyl acetylenes and
polyacetylenes, J. Chem. Soc. B (1968) 1158–1163.
[58] H.E. Davis, N.L. Allinger, D.W. Rogers, Enthalpies of hydrogenation of
phenylalkynes: Indirect determination of the enthalpy of formation of
diphenylcyclopropenone, J. Org. Chem. 50 (1985) 3601–3604.
[59] D.L. Lichtenberger, S.K. Renshaw, R.M. Bullock, Metal-acetylide bonding in
(g<5>-C5H5)Fe(CO)2C„CR compounds. Measures of metal-dp-acetylide-p
interactions from photoelectron spectroscopy, J. Am. Chem. Soc. 115 (1993)
3276–3285.

Author's personal copy

22

S. Rayne, K. Forest / Computational and Theoretical Chemistry 970 (2011) 15–22

[60] J.M. Dyke, H. Ozeki, M. Takahashi, M.C.R. Cockett, K. Kimura, A study of
phenylacetylene and styrene, and their argon complexes PA-Ar and ST-Ar
with laser threshold photoelectron spectroscopy, J. Chem. Phys. 97 (1992)
8926–8933.
[61] C. Koppel, H. Schwarz, F. Bohlmann, Elektronenstossinduzierte
fragmentierung von acetylenverbindungen, Org. Mass Spectrom. 9 (1974)
324–331.
[62] J.W. Rabalais, R.J. Colton, Electronic interaction between the phenyl group
and its unsaturated substituents, J. Electron Spectrosc. Related Phenomena 1
(1973) 83–99.
[63] K. Watanabe, T. Nakayama, J. Mottl, Ionization potentials of some molecules,
J. Quant. Spectrosc. Radiat. Transfer 2 (1962) 369–382.
[64] M.M. Gil’burd, B.G. Syrvatka, V.U. Shevchuk, A.L. Bel’ferman, F.B. Moin, Mass
spectrometric study of fluorine-containing compounds. I. Comparative study
of methylacetylene and difluoromethylacetylene, High Energy Chem. 1
(1967) 359–367.
[65] G. Bieri, E. Heilbronner, V. Hornung, E. Kloster-Jensen, J.P. Maier, F. Thommen,
W. von Niessen, Electronic states of substituted haloacetylene and
cyanoacetylene radical cations, Chem. Phys. 36 (1979) 1–14.
[66] W.R. Cullen, D.C. Frost, W.R. Leeder, The ultraviolet and photoelectron spectra
of some unsaturated fluorocarbon derivatives, J. Fluorine Chem. 1 (1972)
227–233.
[67] J.L. Holmes, F.P. Lossing, The reactivity of [C3 Hþ
3 ] ions: A thermochemical
study, Can. J. Chem. 57 (1979) 249–252.
[68] J. Opitz, Photoionization of propynal in the gas phase, Int. J. Mass Spectrom.
Ion Processes 107 (1991) 503–513.
[69] W. Von Niessen, G. Bieri, L. Asbrink, 30.4 nm He(II) photoelectron spectra of
organic molecules. Part III. Oxo-compounds (C,H,O), J. Electron Spectrosc.
Related Phenomena 21 (1980) 175–183.
[70] O.V. Dorofeeva, L.V. Gurvich, Thermodynamic properties of linear carbon
chain molecules with conjugated triple bonds. Part I. Polyacetylenes,
H(C„C)nH (n = 2–6), cyanopolyacetylenes, C(C„C)nCN (n = 1–5), and
dicyanopolyacetylenes, NC(C„C)nCN (n = 1–4), Thermochim. Acta 178
(1991) 273–286.
[71] P.W. Harland, Appearance energies and enthalpies of formation from
ionization of cyanoacetylene by monochromatic electron impact, Int. J.
Mass Spectrom. Ion Processes 70 (1986) 231–236.
[72] B.J. Smith, L. Radom, Ethynamine: the remarkable acid-strengthening and
base-weakening effect of the acetylenic linkage. A comparison with
ethenamine and methylamine, J. Am. Chem. Soc. 114 (1992) 36–41.
[73] V.M. Orlov, A.A. Krivoruchko, A.D. Misharev, V.V. Takhistov, Enthalpy of vapor
phase formation of ketene, ethynol, and their analogs, Bull. Acad. Sci. USSR,
Div. Chem. Sci. (1986) 2404–2405.
[74] B.J. Persson, P.R. Taylor, J.M.L. Martin, Ab initio calibration study of the heat of
formation, geometry, and anharmonic force field of fluoroacetylene, J. Phys.
Chem. 102 (1998) 2483–2492.
[75] M.J.S. Dewar, H.S. Rzepa, Ground states of molecules. 40. MNDO results for
molecules containing fluorine, J. Am. Chem. Soc. 100 (1978) 58–67.
[76] G. Bieri, F. Brogli, E. Heilbronner, E. Kloster-Jensen, A photoelectron spectroscopic
investigation of the electronic structure of trimethylsilylhaloacetylenes, J.
Electron Spectrosc. Related Phenomena 1 (1973) 67–82.
[77] H. Bock, W. Ried, U. Stein, Analyse und optimierung von gasphasenreaktionen. 19. Pyrolyse von cyclobuten-1,2-dionen zu acetylenen, Chem.
Ber. 114 (1981) 673–683.
[78] H. Okabe, Photodissociation of acetylene and bromoacetylene in the vacuum
ultraviolet. Production of electronically excited ethynyl and ethynylene
molecules, J. Chem. Phys. 62 (1975) 2782–2787.
[79] J.P. Maier, Structure and decay of gaseous organic radical cations studied by
their radiative decay, exemplified by the 1,3-pentadiyne cation, Angew.
Chem. Int. Ed. Engl. 20 (1981) 638–646.
[80] P. Forster, J.P. Maier, F. Thommen, Radiative and non-radiative decay rates of
alkyl substituted diacetylene cations at selected energies within their 2A
states determined via photoelectron-photoion coincidence measurements,
Chem. Phys. 59 (1981) 85–90.
[81] J. Dannacher, E. Heilbronner, J.P. Stadelmann, J. Vogt, Fragmentation of energy
selected butadiyne and 1,3-pentadiyne radical cations, Helv. Chim. Acta 62
(1979) 2186–2201.
[82] F. Brogli, E. Heilbronner, V. Hornung, E. Kloster-Jensen, 230. Die
photoelektronen-spektren methyl-substituierter acetylene, Helv. Chim. Acta
56 (1973) 2171–2178.
[83] G. Bieri, A. Schmelzer, L. Asbrink, M. Jonsson, Fluorine and the
fluoroderivatives of acetylene and diacetylene studied by 30.4 nm He(II)
photoelectron spectroscopy, Chem. Phys. 49 (1980) 213–224.
[84] E. Heilbronner, V. Hornung, J.P. Maier, E. Kloster-Jensen, The photoelectron
spectra of halodiacetylenes, dihalodiacetylenes, and halomethyldiacetylenes,
J. Am. Chem. Soc. 96 (1974) 4252–4262.
[85] M.J.S. Dewar, W. Thiel, Ground states of molecules. 39. MNDO results for
molecules containing hydrogen, carbon, nitrogen, and oxygen, J. Am. Chem.
Soc. 99 (1977) 4907–4917.

[86] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of
quantum mechanical molecular models. 76. AM1: A new general purpose
quantum mechanical molecular model, J. Am. Chem. Soc. 107 (1985) 3902–
3909.
[87] S.E. Stein, A. Fahr, High-temperature stabilities of hydrocarbons, J. Phys.
Chem. 89 (1985) 3714–3725.
[88] K.R. Rodriguez, S.M. Williams, M.A. Young, S. Teeters-Kennedy, J.M. Heer, J.V.
Coe, Carbon chains and the (5,5) single-walled nanotube: Structure and
energetics versus length, J. Chem. Phys. 125 (2006) 194716.
[89] D.W. Rogers, N. Matsunaga, A.A. Zavitsas, F.J. McLafferty, J.F. Liebman, The
conjugation stabilization of 1,3-butadiyne is zero, Org. Lett. 5 (2003) 2373–
2375.
[90] A.C. Simmonett, H.F. Schaefer, W.D. Allen, Enthalpy of formation and
anharmonic force field of diacetylene, J. Chem. Phys. 130 (2009) 44301.
[91] J.H. Kiefer, S.S. Sidhu, R.D. Kern, K. Xie, H. Chen, L.B. Harding, The
homogeneous pyrolysis of acetylene. II. The high temperature radical chain
mechanism, Combust. Sci. Technol. 82 (1992) 101–130.
[92] J.R. Reeher, G.D. Flesch, H.J. Svec, The mass spectra and ionization potentials
of the neutral fragments produced during the electron bombardment of
aromatic compounds, Org. Mass Spectrom. 11 (1976) 154–166.
[93] W.L. Smith, The absorption spectrum of diacetylene in the vacuum
ultraviolet, Proc. Roy. Soc. A 300 (1967) 519–533.
[94] C. Baker, D.W. Turner, Photoelectron spectra of acetylene, diacetylene, and
their deutero-derivatives, Chem. Commun. (1967) 797–799.
[95] N. Hansen, S.J. Klippenstein, P.R. Westmoreland, T. Kasper, K. KohseHoinghaus, J. Wang, T.A. Cool, A combined ab initio and photoionization
mass spectrometric study of polyynes in fuel-rich flames, Phys. Chem. Chem.
Phys. 10 (2008) 366–374.
[96] Y. Li, L. Zhang, Z. Tian, T. Yuan, K. Zhang, B. Yang, F. Qi, Investigation of the rich
premixed laminar acetylene/oxygen/argon flame: Comprehensive flame
structure and special concerns of polyynes, Proc. Combust. Inst. 32 (2009)
1293–1300.
[97] M. Allan, E. Heilbronner, E. Kloster-Jensen, J.P. Maier, The P-states of
tetraacetylene radical cation, Chem. Phys. Lett. 41 (1976) 228–230.
[98] G.T. Armstrong, S. Marantz, The heat of combustion of dicyanoacetylene, J.
Phys. Chem. 64 (1960) 1776–1778.
[99] G.T. Armstrong, S. Marantz, The heat of combustion of dicyanoacetylene
[correction Ref. 60ARM/MAR], J. Phys. Chem. 67 (1963) 2888.
[100] J.P. Maier, L. Misev, F. Thommen, Dicyanoacetylene cation. Laser-induced
fluorescence and photoelectron–photon coincidence studies, J. Phys. Chem.
86 (1982) 514–518.
[101] C. Baker, D.W. Turner, High resolution molecular photoelectron spectroscopy.
III. Acetylenes and azaacetylenes, Proc. Roy. Soc. A 308 (1968) 19–37.
[102] V.H. Dibeler, R.M. Reese, J.L. Franklin, Mass spectrometric study of cyanogen
and cyanoacetylenes, J. Am. Chem. Soc. 83 (1961) 1813–1818.
[103] R.E. Connors, J.L. Roebber, K. Weiss, Vacuum ultraviolet spectroscopy of
cyanogen and cyanoacetylenes, J. Chem. Phys. 60 (1974) 5011–5024.
[104] T.C. Ehlert, Bonding in C1 and C2 fluorides, J. Phys. Chem. 73 (1969) 949–953.
[105] G. Bieri, E. Heilbronner, J.P. Stadelmann, J. Vogt, W. von Niessen, Electronic
states of difluoroacetylene, difluorodiacetylene, and perfluoropentadiyne-1,3
radical cations. A photoelectron spectroscopic investigation, J. Am. Chem. Soc.
99 (1977) 6832–6838.
[106] J.P. Maier, F. Thommen, Relaxation dynamics of open-shell cations studied by
photoelectron–photon coincidence spectroscopy, Gas Phase Ion Chem. 3
(1984) 357–364.
[107] D. Klapstein, J.P. Maier, W. Zambach, Emission spectra of rotationally cooled
dihaloacetylene cations in the gas phase: A2P(X,g) ? x2P(X,u) band
systems, Chem. Phys. 77 (1983) 463–469.
[108] J.P. Maier, F. Thommen, Relaxation of dihaloacetylene cations in their A and B
states studied by photoelectron–photoion coincidence spectroscopy, Chem.
Phys. 70 (1982) 325–328.
[109] E. Kloster-Jensen, C. Pascual, J. Vogt, Mass spectrometric studies of mono- and
di-haloacetylenes, Helv. Chim. Acta 53 (1970) 2109–2118.
[110] E. Heilbronner, V. Hornung, E. Kloster-Jensen, Die photoelektron-spektren der
dihalogen-acetylene, Helv. Chim. Acta 53 (1970) 331–346.
[111] O. Sorkhabi, F. Qi, A.H. Rizvi, A.G. Suits, The ultraviolet photochemistry of
phenylacetylene and the enthalpy of formation of 1,3,5-hexatriyne, J. Am.
Chem. Soc. 123 (2001) 671–676.
[112] J.F. Capitani, Tetraethynylmethane: A semi-empirical molecular orbital study,
J. Mol. Struct. (Theochem) 332 (1995) 21–23.
[113] F. Brogli, E. Heilbronner, J. Wirz, E. Kloster-Jensen, R.G. Bergman, K.P.C.
Vollhardt, A.J. Ashe, The consequences of r and p conjugative interactions in
mono-, di- and triacetylenes. A photoelectron spectroscopic investigation,
Helv. Chim. Acta 58 (1975) 2620–2645.


Related documents


comput theor chem 970 2011 15 22
j chem eng data 55 2010 5359 5364
propellants explos pyrotech 36 2011 410 415
j mol struct theochem 948 2010 111 112
comput theor chem 974 2011 163 179
j chem engr data 56 2011 684 685


Related keywords