03 dynamics .pdf




File information

This PDF 1.6 document has been generated by / doPDF Ver 7.3 Build 394 (unknown Windows version - Version: 6.3.9600 (x64)), and has been sent on pdf-archive.com on 09/11/2015 at 08:39, from IP address 116.58.x.x. The current document download page has been viewed 854 times.
File size: 869.03 KB (11 pages).
Privacy: public file




Document preview


03| MwZwe`¨v

‡gv: kvn& Rvgvj
mnKvix Aa¨vcK (c`v_©weÁvb wefvM )

(Dynamics)

we G Gd kvnxb K‡jR XvKv
‡dvb: 01670 856105, 9125630, 9115369

E-mail: sjamal59@gmail.com

Mo‡eM (Average Velocity):
msÁv: †h †Kvb mgq e¨eav‡b †Kvb e¯‘i M‡o cÖwZ GKK mg‡q †h miY nq Zv‡K e¯‘wUi Mo †eM e‡j|


 Δr
e¨L¨v: t mgq e¨eav‡b †Kvb e¯‘i miY r n‡j Mo †eM v 
n‡e|
t
‡eM (Velocity):

msÁv: mgq e¨eavb k~‡b¨i KvQvKvwQ n‡j mg‡qi mv‡_ e¯‘i mi‡Yi nvi‡K †eM e‡j|








Δr
Δr
e¨L¨v: t mgq e¨eav‡b †Kvb e¯‘i miY r n‡j †eM v  lim
wKš‘
n‡”Q Mo †eM v | myZivs v  lim v
t 0 t
t  0
t

ah

Ja

m
al

A_©vr mgq e¨eavb k~‡b¨i KvQvKvwQ n‡j Mo †e‡Mi mxgvwšÍK gvb‡KB †eM e‡j|
mg‡eM ev mylg †eM (Uniform Velocity) :
hw` †Kvb e¯‘i MwZKv‡j Zvi †e‡Mi gvb I w`K AcwiewZ©Z _v‡K Zvn‡j †mB e¯‘i †eM‡K mg‡eM e‡j| A_©vr †Kvb e¯‘
hw` wbw`©ó w`‡K mgvb mg‡q mgvb c_ AwZµg K‡i Zvn‡j e¯‘i
†eM‡K mg‡eM e‡j| k‡ãi †eM, Av‡jvi †eM, cÖf„wZ mg‡e‡Mi cÖK…ó
cÖvK…wZK D`vniY|
Amg‡eM (Variable Velocity) t
‡Kvb e¯‘i MwZKv‡j hw` Zvi †e‡Mi gvb ev w`K ev DfqB cwiewZ©Z nq Zvn‡j †mB †eM‡K Amg‡eM e‡j| Avgiv
mPvivPi †h MwZkxj e¯‘ †`wL Zv‡`i †eM Amg‡eM|

ht

©

Sh

ZvrÿwYK †eM (Instantaneus Velocity) :
GKwU e¯‘ mij ev eµ c‡_ Amg‡e‡M Pj‡j cÖwZwbqZ Gi †e‡Mi cwieZ©b nq| Gfv‡e Amg‡e‡M PjšÍ †Kvb e¯‘i †h
†Kvb gyû‡Z©i †eM‡K H e¯‘i ZvrÿwYK †eM e‡j| ZvrÿwYK †e‡Mi w`K e¯‘wUi H gyû‡Z©i Ae¯’v‡b AswKZ MwZc‡_i
¯úk©K eivei|
Z¡iY (Acceleration) :

C
op

yr
ig


 v

mg‡qi mv‡_ †eM e„w×i nvi‡K Z¡iY e‡j| t mgq e¨eav‡b e¯‘i †e‡Mi cwieZ©b v n‡j Z¡iY a 
n‡e| Ab¨fv‡e
t
ejv hvq mgq e¨eavb k~‡b¨i KvQvKvwQ n‡j mg‡qi mv‡_ e¯‘i †eM e„w×i nvi‡K Z¡iY e‡j| t mgq e¨eav‡b e¯‘i †e‡Mi



v
cwieZ©b v n‡j Z¡iY a  lim
n‡e| Gi GKK ms-2
t  0  t
mgZ¡iY ev mylg Z¡iY (Uniform Acceleration):

GKB w`‡K GKB mgq e¨eav‡b †e‡Mi e„w×i nvi mgvb n‡j Zv‡K mgZ¡iY ev mylg Z¡iY e‡j| AwfK‡l©i Uv‡b gy³fv‡e
cošÍ e¯‘i †eM e„w×i nvi‡K AwfKl©R Z¡iY e‡j| AwfKl©R Z¡iY, mgZ¡iY wewkó MwZi GKwU cÖKó… D`vniY| mgZ¡i‡Y,
Z¡i‡Yi gvb I w`K mg‡qi mv‡_ AcwiewZ©Z _v‡K| mgZ¡i‡Y MwZkxj
e¯‘‡Z mgej wµqvK‡i e¯‘i cici †m‡K‡Ûi †e‡Mi AšÍiB mgZ¡iY|
wP‡Î GKwU mij‡iLv eivei cici †m‡K‡Ûi †eM †`wL‡q Gi Z¡i‡bi cÖK…wZ wb‡`©k Kiv n‡q‡Q| GLv‡b mgZ¡i‡Yi gvb
2ms2 |

AmgZ¡iY (Variable Acceleration):
GKB mgq e¨eav‡b †e‡Mi e„w×i nvi mgvb bv n‡j Zv‡K AmgZ¡iY e‡j| evm †Uªb, †gvUiMvwo BZ¨vw`i Z¡iY Amg Z¡i‡Yi
D`vniY| wP‡Î GKwU mij‡iLv eivei cici †m‡K‡Ûi †eM †`wL‡q Gi Z¡i‡bi cÖK…wZ wb‡`©k Kiv n‡q‡Q| GLv‡b Z¡i‡Yi
gvb AmgZ¡iY|

http://teachingbd.com

03| MwZwe`¨v (Dynamics)

2

ZvrÿwYK Z¡iY (Instantaneous acceleration): †Kvb GKwU MwZkxj e¯‘i mg‡qi e¨eavb k~‡b¨i KvQvKvwQ n‡j mg‡qi

mv‡_ e¯‘i †eM cwieZ©‡bi nvi‡K ZvrÿwYK Z¡iY e‡j| t mgq e¨eav‡b e¯‘i †e‡Mi cwieZ©b v n‡j Z¡iY


v
a  lim
n‡e|
t  0  t

miY (Displacement)t wbw`©ó w`‡K e¯‘i Ae¯’v‡bi cwieZ©b‡K miY e‡j| miY‡K s ev d Øviv cÖKvk Kiv nq| Gi GKK
wgUvi| wbw`©ó w`‡K †Kvb e¯‘ t mgq a‡i v †e‡M Pj‡j, miY s = v t n‡e| miY GKwU †f±i ivwk|
Av‡cwÿK †eM (Relative
Av‡cwÿK †eM e‡j|

(Mean velocity):

`ywU MwZkxj e¯‘i GKwUi Zzjbvq (mv‡c‡ÿ) AciwUi Ae¯’v‡bi cwieZ©‡bi nvi‡K

†Kvb GKwU MwZkxj e¯‘i cÖ_g Ges †kl †eM Gi AwfgyL GKB n‡j Zv‡`i †hvM d‡ji

m
al

ga¨ †eM

velocity):

A‡a©K‡K ga¨ †eM e‡j| ‡Kvb wbw`©ó w`‡K †Kvb e¯‘i Avw`‡eM vi I †kl †eM vf n‡j ga¨‡eM =

vi  v f
2

n‡e|

ah

Ja

MwZi msµvšÍ mgxKiY mgvKj‡bi mvnv‡h¨ Dc¯’vcb:
(K) vx  vxo  ax t cÖwZcv`b|
g‡bKwi, X Aÿ eivei GKwU e¯‘ mylg Z¡i‡Y MwZkxj| Av‡iv awi, GB MwZi cÖviw¤¢K kZ©vw` nj mgq Mbbvi ïiæ‡Z
A_©vr hLb t = 0 ZLb Avw` Ae¯’vb x = 0 Ges Avw`‡eM vx = vxo | Av‡iv awi, t mgq ci e¯‘wUi Ae¯’vb x = x Ges
Ges †eM vx = vx| ‡h‡nZz †h †Kvb gyn‡~ Z©i mg‡qi mv‡c‡ÿ †Kvb KYvi †eM e„w×i nvi‡K Z¡iY e‡j|
dv x
dt
 dv x  ax dt

Sh

myZivs, ax 

vx

©

hLb t = 0 ZLb vx = vxo Ges x = xo Avevi, hLb t = t ZLb vx = vx Ges x = x
GB mxgvi g‡a¨ mgxKiY‡K mgvKjb K‡i cvB,
v xo

0

 ax t 

t

yr
ig

 v x 

vx

 ax  aª æeK 

ht

t

 dvx  ax  dt
v x0

o

C
op

 v x  v xo  a x t  0 
 v x  v xo  a x t mgxKiYwU cÖwZcv`b Kiv nj|

1
2

(L) x  xo  vxo t  ax t 2

cÖwZcv`b:

g‡bKwi, X Aÿ eivei GKwU e¯‘ ax mylg Z¡i‡Y MwZkxj| Av‡iv awi, GB MwZi cÖviw¤¢K kZ©vw` nj mgq Mbbvi ïiæ‡Z
A_©vr hLb t = 0 ZLb Avw` Ae¯’vb x = xo Ges Avw`‡eM vx = vxo | Av‡iv awi, t mgq ci e¯‘wUi Ae¯’vb x = x Ges
Ges †eM vx = vx| ‡h‡nZz †h †Kvb gyn‡~ Z©i mg‡qi mv‡c‡ÿ †Kvb KYvi †eM e„w×i nvi‡K Z¡iY e‡j|
dvx
dt
 dvx  ax dt hLb t = 0 ZLb vx = vxo Ges x = xo Avevi, hLb t = t ZLb vx = vx Ges x = x GB

myZivs, ax 

mxgvi g‡a¨ mgxKiY‡K mgvKjb K‡i cvB,
vx

t

 ax  aª æeK 

 dvx  ax  dt

v xo

 v

0



vx
x v xo

 ax t o
t

 vx  vxo  ax t  0

http://teachingbd.com

03| MwZwe`¨v (Dynamics)
 vx  vxo  ax t ... ... ... ... ... (1)

(1) mgxKi‡Y vx 

3

†h †Kvb gyû‡Z© e¯‘i miY e„w×i nvi‡K †eM e‡j| D³

dx
 v xo  a x t
dt
 dx  vxo dt  a x t dt
x
t
t
  dx  v xo  dt  a x  t dt
xo
o
o

dx
ewm‡q cvB,
dt

t

t2 
 x   v xo t   ax  
 2 o
1
 x  xo  vxo t  0   a x t 2  0 
2
1
 x  xo  vxot  a xt 2 mgxKiYwU cÖwZcv`b Kiv nj|
2
1 2
1 2
ev,  x  xo  vxot  a xt  S  v xot  a xt mgxKiYwUI cÖwZcv`b Kiv nj| w¯’i
2
2
1
2
Ae¯’vb †_‡K mgZ¡i‡Y Pjgvb e¯‘i †ÿ‡Î, v xo  0 Ges a x  aª æeK ,d‡j S  0   aª æeK  t  S  aª æeK t 2
2
2
 S t Kv‡RB, w¯’i Ae¯’vb †_‡K mgZ¡i‡Y Pjgvb e¯‘i AwZµvšÍ `yiZ¡ mg‡qi e‡M©i mgvbycvwZK|
t
o

Sh

ah

Ja

m
al

x
xo

©

(M) v 2x  v 2xo  2ax ( x  x o ) cÖwZcv`b :
awi, GKwU e¯‘ X Aÿ eivei ax mylg Z¡i‡Y MwZkxj| GB MwZi cÖviw¤¢K kZ©vw` nj hLb mgq Mbbvi ïiæ‡Z hLb t = 0
ZLb Avw` Ae¯’vb x = xo Ges Avw`‡eM vx = vxo Avevi, t mgq ci KYvwUi Ae¯’vb x Ges †eM vx | †h‡nZz ‡h †Kvb
gyn‡~ Z© mg‡qi mv‡c‡ÿ e¯‘i †eM e„w×i nvi‡K Z¡iY e‡j|

ht

dv x
dt
dv
dx
 ax  x 
dx dt
dv
 dx

 ax  x  v x

 vx 

dx
 dt

 v x dv x  a x dx
hLb x = xo ZLb vx = vxo Ges hLb x = x ZLb vx = vx GB mxgvi g‡a¨ Dc‡iv³ mgxKiY‡K mgvKjb K‡i cvB,

C
op

yr
ig

myZivs Z¡ iY a x 

vx

x

 v x dv x  ax  dx

v xo

xo

2
x

vx

v 
    a xx
x x
 2  vxo
o
v 2x  v 2xo
 ax ( x  x o )
2
 v 2x  v 2xo  2a x ( x  x o )


mgxKiYwU cÖwZcv`b Kiv nj|

http://teachingbd.com

03| MwZwe`¨v (Dynamics)

4

cošÍ e¯‘i m~Î eY©bv (Laws of falling bodies) :
evavnxb fv‡e cošÍ e¯‘ wb‡¤§v³ wZbwU m~Î †g‡b P‡j| 1589 wLª÷v‡ã weÁvbx M¨vwjwjI m~Î wZbwU Avwe®‹vi K‡ib t
1g m~Ît e¯‘ mgvb mg‡q mgvb c_ AwZµg K‡i|
2q m~Ît wbw`©ó mg‡q e¯‘ †h †eM jvf K‡i Zv H mg‡qi mgvbycvwZK| t mg‡q v †eM jvf Ki‡j, m~Îvbyhvqx †eM n‡e,
vt

ah

djvdjt evqyk~b¨ ¯’v‡b mKj e¯‘ mgvb mg‡q mgvb c_ AwZµg K‡i|

Ja

m
al

3q m~Ît wbw`©ó mg‡q e¯‘ KZ…K AwZµvšÍ `~iZ¡ H mg‡qi e‡M©i mgvbycvwZK| t mg‡q AwZµvšÍ `yiZ¡ h n‡j, m~Îvbyhvqx
D”PZv n‡e, ht 2
¯^b©gy`ªv I cvjK cixÿv:
hš¿cvwZt (K) j¤^v GKwU k³, †gvUv I duvcv `yBgyL †Lvjv KvPbj B| (L) GKwU Uzwc C
(M) GKwU ÷c KK© S (N) GKwU cvjK |
cixÿvi weeiY: KvPb‡ji GKcÖv‡šÍGKwU Uzwc C Ges Aci cÖv‡šÍGKwU ÷c KK© S _v‡K|
Uzwc Ly‡j GKwU ¯^b©gy`ªv G Ges GKwU cvjK F b‡ji g‡a¨ XyKv‡bv nq| ócK‡K©i Pvwe Ly‡j
cv‡¤úi mvnv‡h¨ bjwU‡K evqyc~b© ev evqyk~b¨ Kiv hvq| bjwU‡K nVvr Dwë‡q gy`ªv I cvjK‡K
wb‡Piw`‡K co‡Z †`Iqv nq| cixÿvq †`Lv hvq †h (1) evqyc~b© Ae¯’vq gy`ªvwU cvj‡Ki Av‡M
wb‡Pi cÖv‡šÍc‡o| (2) evqyk~b¨ Ae¯’vq gy`ªv I cvjK GKB mv‡_ wb‡Pi cÖv‡šÍ c‡o|

C
op

yr
ig

ht

©

Sh

(K) (vt) MÖv‡di mvnv‡h¨ v = v0+at cÖgvY:
mgZ¡i‡Y MwZkxj †Kvb e¯‘i †ÿ‡Î X A‡ÿi w`‡K mgq t Ges Y A‡ÿi w`‡K †eM v wb‡q v ebvg t ‡jL wPÎ AsKb
Kiv nj| GB ‡jLwPÎ †_‡K t mg‡q e¯‘i AwZµvšÍ `~iZ¡ s wbb©q Kiv hvq| AB ‡iLvi Dci †h †Kvb we›`y P †bqv nq| P
†_‡K X A‡ÿi Dci PQ j¤^ Uvbv nq| Zvn‡j OQ = t mg‡q AwZµvšÍ `~iZ¡ s n‡e AOQP ‡ÿ‡Îi †ÿÎdj|
Avw`‡eM,
v0 = OA=RQ.... ... .... (1)
‡kl †eM,
v = PQ .... .... ..... .... (2)
wKš‘, PQ = PR+RQ ... ... ..(3)
myZivs, v = PR+RQ
ev, v = PR+ v0 ... ... (4)
Avgiv Rvwb,Z¡iY a = AB ‡iLvi Xvj|
PR
a
AR
wKš‘, AR = OQ= t



a

PR
t

AZGe, PR= at
(4) bs mgxKi‡Y PR Gi gvb ewm‡q,
v = at+ v0
v = v0 + at

http://teachingbd.com

03| MwZwe`¨v (Dynamics)

5
1
2

(L) mgZ¡iY MwZi †ÿ‡Î †eM ebvg mgq (v  t)†jLwPÎ AsKb Ges †jLwPÎ n‡Z s  v o t  at 2 mgxKiYwU cÖwZcv`b:
mgZ¡i‡Y MwZkxj †Kvb e¯‘i †ÿ‡Î X A‡ÿi w`‡K mgq t Ges Y A‡ÿi w`‡K †eM v wb‡q v ebvg t ‡jL wPÎ AsKb
Kiv nj| GwU Y Aÿ‡K †Q`Kvix GKwU mij †iLv nq hv, v = vo+at mgxKiY †g‡b P‡j| GB ‡jLwPÎ †_‡K t mg‡q e¯‘i
AwZµvšÍ `~iZ¡ s wbb©q Kiv hvq| AB ‡iLvi Dci †h †Kvb we›`y P †bqv nq| P †_‡K X A‡ÿi Dci PQ j¤^ Uvbv nq|
Zvn‡j OQ = t mg‡q AwZµvšÍ `~iZ¡ s n‡e AOQP ‡ÿ‡Îi
†ÿÎdj| aiv hvK, KYvwUi mgZ¡iY a
Ges Avw`‡eM, vo = AO
AwZµvšÍ mgq, t = OQ
Ges t mg‡q AwZµvšÍ `~iZ¡, s = AOQP ‡ÿ‡Îi †ÿÎdj|
= AOQR ‡ÿ‡Îi †ÿÎdj  ARP ‡ÿ‡Îi †ÿÎdj|
×AR×PR

©

Sh

ah

s = AO×OQ + 12 ×OQ×PR [∵ AR = OQ ]
wKš‘ AB ‡iLvi Xvj n‡”Q KYvwUi Z¡iY a,
PR
a 
AR
PR = a×AR
= a×OQ
s = AO×OQ + 12 ×OQ×a×OQ
 s = AO×OQ + 12 ×a×OQ2
1
 s  v o t  at 2 mgxKiYwU cÖwZcv`b Kiv nj| 
2

m
al

1
2

Ja

= AO×OQ +

(M) mgZ¡iY MwZi †ÿ‡Î †eM ebvg mgq (v  t)†jLwPÎ AsKb Ges †jLwPÎ n‡Z

(mgvšÍivj `yB evûi † hvMdj)  DPPZv
2

s

C
op

s 

yr
ig

ht

cÖwZcv`b:
wPÎ †_‡K †`L‡Z cvB, `~iZ¡ (s) AwZµg Ki‡Z e¯‘wUi mgq jv‡M = t
s = UªvwcwRq‡gi †ÿÎdj AOQP

(OA  QP )  OQ

2
(v

v)

t
s 
... ... ... (6)
2
vv
vv
0
0
Avgiv Rvwb, a 
 t
t
a
0

t Gi

gvb (6) bs mgxKi‡Y ewm‡q cvB,

 s  (v  v)(v  v 0 )
2a
 2as  v2  v02
0

 v 2  v 02  2as

http://teachingbd.com

2

v v

2
0

 2as

mgxKiYwU

03| MwZwe`¨v (Dynamics)

6

cÖkœt cÖvm Kv‡K e‡j?
DËit †Kvb e¯‘‡K Abyfywg‡Ki mv‡_ wZh©Kfv‡e †Kvb ¯’v‡b wb‡ÿc Kiv n‡j Zv‡K cÖvm e‡j| wZh©Kfv‡e wbwÿß
wXj, ey‡j‡Ui MwZ BZ¨vw` cÖvm MwZi D`vniY|
cÖÖkœt Abyfywg‡Ki mv‡_ wZh©Kfv‡e wbwÿß cÖv‡mi MwZc‡_i mgxKiY wbb©q Ki Ges †`LvI †h, GB MwZc_ Awae„ËvKvi|

Ja

m
al

DËit g‡bKwi, evqyga¨w¯’Z O we›`y n‡Z GKwU cÖvm‡K wb‡ÿc Kiv nj|
wb‡ÿc †eM ev Avw`‡eM = vo
wb‡ÿc ‡KvY = 
g wb‡Pi w`‡K wµqvkxj| AZGe ay = -g; ax = 0;
wb‡ÿc we›`y I g~j we›`y GKB nIqvq xo = yo = 0
 Avw`‡e‡Mi Abyf~wgK Dcvsk = voCoso
Ges Avw`‡e‡Mi Dj¤^ Dcvsk = voSino
X Aÿ eivei MwZi cwieZ©b D³ Aÿ eivei Z¡i‡Yi Dci wbf©ikxj| Y Aÿ eivei MwZi cwieZ©b D³ Aÿ
eivei Z¡i‡Yi Dci wbf©ikxj| G `ywU Aÿ eivei MwZi cwieZ©b Awbf©ikxj|
awi t mg‡q cÖvmwU P(x,y) Ae¯’v‡b _v‡K| ZLb Gi †eM = v
Abyf~wg‡Ki w`‡K Z¡iY, ax= 0
Abyf~wg‡Ki w`‡K miY = x

Sh

ah

x = voCoso t + 12 axt2
ev, x = voCoso t + 0
[ax= 0]
ev, x = voCoso t
x
t 
.......................(1)
vo Cos o

©

Dj¤^ w`‡K Z¡iY ay=g;
Dj¤^ w`‡K miY y; Abyiƒcfv‡e

o

o



x

v Cos 
o


x

g 
 v Cos 
2
 o
1

yr
ig

ev, y  v Sin 

ht

y=voSinot 12 gt2

o

o






2

[t Gi gvb ewm‡q]

2

 y  bx  cx

C
op


 2
g
 x
ev, y  tan  o x   2
2
 2vo Cos  o 



g
awi, aª æeK tan θo  b Ges 2 2  c 
2voCos θo



Dc‡iv³ mgxKiYwU GKwU Awae„‡Ëi mgxKiY|  cÖv‡mi MwZc_ GKwU Awae„Ë (c¨viv‡evjv)|
cÖkœt cÖgvY Ki, evqynxb Ae¯’vq f~wg n‡Z D”PZvq Aew¯’Z †h †Kvb Ae¯’vb n‡Z Abyf~wgK Awfgy‡L wbwÿß e¯‘i MwZc_
GKwU Awae„Ë|
g‡bKwi, k~‡b¨ Aew¯’Z O we›`y n‡Z vo †e‡M f~wgi mgvšÍiv‡j GKwU e¯‘KYv wbwÿß nj| e¯‘ KYvwU g Gi cÖfv‡e
bx‡P co‡e| awi cÖ‡ÿcb Z‡j Abyf~wgK OX †iLv X Aÿ Ges OY †iLv Y Aÿ| awi t mgq c‡i e¯‘ KYvwU MwZ c‡_i
P(x,y) we›`y‡Z gyn‡~ Zi Rb¨ Ae¯’vb Ki‡e| g bx‡Pi w`‡K wµqvkxj|
AZGe ay = g; ax= 0 ;
Avw`‡e‡Mi Abyf~wgK Dcvsk = vo
Ges Avw`‡e‡Mi Dj¤^ Dcvsk = 0

http://teachingbd.com

03| MwZwe`¨v (Dynamics)

7

tmg‡q AwfKl©RZ¡iYnxb Abyf~wgK miY x = vot
 x 2  v o2 t 2 ...

...

... ...

(1 )

... ...

tmg‡q Dj¤^ miY y = 0.t + 12 gt2
y=

1
2

gt2...

.... .... .... .... .... ....

(2)

(1) ‡K (2) Øviv fvM K‡i cvB
x2
v 2t 2
 1o 2
y
2 gt

x 2 2 v 2o

y
g

 2v 2 
 x 2   o  y
 g 


2vo2
awi
,
 4a  aª æeK 

g



 x 2  4ay

m
al



Ja

Dc‡iv³ mgxKiYwU GKwU Awae„‡Ëi mgxKiY| ZvB wbwÿß e¯‘i MwZc_ GKwU Awae„Ë (c¨viv‡evjv)|

ht

©

Sh

ah

cÖkœt Abyfywg‡Ki mv‡_ wZh©K fv‡e wbwÿß e¯‘i ‡ÿ‡Î (K) m‡e©v”P D”PZvq †cŠQ‡Z mgq (L) m‡e©v”P D”PZv (M) wePiY
Kvj (N) cvjøv (O) me©vwaK cvjøv wbb©q Ki|
g‡b Kwi, evqyga¨w¯’Z O we›`y n‡Z GKwU cÖvm‡K vo †e‡M o †Kv‡Y wZh©Kfv‡e wb‡ÿc Kiv nj| cÖvmwU t mg‡q m‡e©v”P
D”PZv P(x,y) G Ae¯’vb Ki‡e Ges ZLb Gi †eM n‡e v|
(K) m‡e©v”P D”PZvq †cŠQ‡Z mgqt vo †e‡Mi Dj¤^ Dcvsk voSino
t mgq c‡i P we›`y‡Z †eM, vy = voSino gt.................(1)
P we›`yMvgx m‡e©v”P D”PZvq vy= 0..................................... (2)
(1) bs mgxKi‡Y vy= 0 ewm‡q cvB

C
op

(L) m‡e©v”P D”PZvt
g‡bKwi, m‡e©v”P D”PZv = H

yr
ig

0 = voSino gt
v Sin o
 t o
..................................(3)
g

 H = voSinot  12 gt2

v Sin o 1  vo Sin o 

 H  vo Sin o  o
 2 g 
g
 g 

H 

vo Sin o 2  vo Sin o 2
g

2g

2

 (3)

bs n‡ Z t Gi gvb ewm‡ q  



v o2Sin 2 o
... ... ... ... ... ... ... (4) 
2g
(M) DÇqb (wePiY) Kvj (Time of Flight) t
g‡b Kwi wePiY Kvj T A_©vr T mg‡q cÖvmwU mgZ‡j wd‡i Av‡m|
H 

 t mg‡q Dj¤^ w`‡K miY y = voSinot  12 gt2GB mgxKi‡Y mgq t = T Ges miY y = 0 ewm‡q cvB,
0 = voSinoT  12 gT2

ev, 12 gT2 = voSinoT

http://teachingbd.com

03| MwZwe`¨v (Dynamics)

8

2vo Sinθo
... ... ... ... ... ... (5) 
g
(N) cvjøv (Range)t
g‡b Kwi cvjøv R A_©vr T mg‡q cÖvmwU Abyfywg‡Ki w`‡K †h `~iZ¡ AwZµg K‡i ZvBB cvjøv R
 R = ( voCoso ) × T
2v Sin o
 R  voCos o  o
[(5) bs n‡Z T Gi gvb ewm‡q]
g
T 

R

vo2 2Sin o Cos o
g

Ja

m
al

vo2 Sin 2 o
R 
...........................(6)
g
(O) me©vwaK cvjøv (Maximum Range) t
g‡bKwi me©vwaK cvjøv Rmax| wbw`©ó vo Gi Rb¨, Sin20 Gi gvb me©vwaK n‡j cvjøv n‡e me©vwaK| Sin20 Gi
me©vwaK gvb = 1
A_©vr Sin20 = 1
ev, Sin20 = Sin900
ev, 20 = 900

0 = 450 myZivs wb‡ÿc †KvY0 = 450 n‡j cvjøv me©vwaK
v 2 Sin 2  45o
 me©vwaK cvjøv Rmax  o
g
2
v Sin 90 o
 Rmax  o
g
v2 1
 Rmax  o
g
2
v
 Rmax  o ... ... ... ... ... (7)
g

yr
ig

ht

©

Sh

ah



  
cªkœt ˆiwLK †eM I †KŠwbK †e‡Mi msÁv `vI Ges G‡`i g‡a¨ m¤úK© ¯’vcb Ki| ev, v  r ev , v    r cÖgvb Ki |

C
op

  
ev, v    r cÖgvY Ki |

‰iwLK †eM (Linear Velocity)t wbw`©ó w`‡K ˆiwLK c‡_ †Kvb e¯‘ GKK mg‡q †h `yiZ¡ AwZµg K‡i Zv‡K H e¯‘i ‰iwLK
†eM e‡j| ˆiwLK †eM‡K v Øviv cÖKvk Kiv nq| wbw`©ó w`‡K e¯‘ t mg‡q d `~iZ¡ AwZµg Ki‡j †eM v 

d
n‡e| †eM
t

GKwU †f±i ivwk| ˆiwLK †e‡Mi GKK ms-1
‡KŠwYK †eM (Angular Velocity) t mgq e¨eavb k~‡b¨i KvQvKvwQ n‡j †Kvb we›`y ev Aÿ‡K †K›`ª K‡i e„ËvKvi c‡_
Pjgvb †Kvb e¯‘i mg‡qi mv‡_ †KŠwbK mi‡Yi nvi‡K †KŠwbK †eM e‡j| Ab¨ K_vq e„ËvKvi c‡_ †Kvb e¯‘ GKK mg‡q
†h †KŠwbK `~iZ¡ AwZµg K‡i Zv‡K H e¯‘i †KŠwbK †eM e‡j| †KŠwbK †eM‡K  Øviv cÖKvk Kiv nq| wbw`©ó w`‡K e¯‘ t

n‡e| †KŠwbK †e‡Mi GKK rad s-1
t
† KvY
Pvc
L


 T-1
Gi gvÎv n‡”Q 
mgq
e¨vmva©  mgq L  T

mg‡q  ‡KvY Drcbœ Ki‡j †KŠwbK †eM  

http://teachingbd.com

03| MwZwe`¨v (Dynamics)

9

m¤úK© (Relation) t
g‡bKwi GKwU e¯‘KYv OC= OB = r e¨vmva© wewkó GKwU e„‡Ëi
cwiwa eivei‡KŠwbK †e‡M Nyi‡Q| hw` T †m‡K‡Û e¯‘ KYvwU e„‡Ëi cwiwa
eivei GKevi Ny‡i Av‡m Z‡e †KŠwbK `~iZ¡  =  †iwWqvb n‡e|
 ‡KŠwbK †eM, ω 

ev, T 


T


... ... ... ... ...(1)
ω

GLb e¯‘ KYvwU hw` e„ËvKvi c‡_ bv Ny‡i H GKB mg‡q mij †iLv eivei PjZ Z‡e T mg‡q e¯‘KYvwU e„ËwUi

T 

2πr
T

2πr
... ... ... ... ...( 2)
v

m
al

cwiwai mgvb c_ r `~iZ¡ AwZµg KiZ|  ˆiwLK †eM v 

yr
ig

ht

©

Sh

ah

Ja

(1) bs I (2) mgxKiYØq n‡Z cvB
2 2 r


v
1 r
 
 v
 v = r A_©vr ‰iwLK †eM = †KŠwbK †eM × e„‡Ëi e¨vmva©|
v = r mgxKi‡Yi ‡f±i iƒc:
  
g‡b Kwi, u    r ... ... ... (3) 
 

u ‡f±‡ii gvb u  r sin 90  r [  r ]
 


µm ¸Y‡bi wbqg Abymv‡i,   r ev , u †f±‡ii AwfgyL Ges v †f±‡ii AwfgyL Awfbœ| Avevi v = r| †`Lv hv‡”Q †h,
 
gvb I w`K we‡ePbvq u I v ‡f±i Awfbœ|
 
 u  v ... ... ... (4)
  
(3) I (4) n‡Z v    r (cÖgvwYZ)

C
op

‡K›`ªgyLx ej (Centripetal Force): hLb †Kvb e¯‘ e„ËvKvi c‡_ Nyi‡Z _v‡K ZLb †h ej e¯‘i Dci H e„‡Ëi †K›`ª
Awfgy‡L wµqv K‡i e¯‘wU‡K e„ËvKvi c‡_ MwZkxj iv‡L Zv‡K †K›`ªgyLx ej e‡j| m f‡ii e¯‘ r e¨vmva© wewkó e„ËvKvic‡_
v mg`ªæwZ‡Z Nyi‡Z _vK‡j Zvi †K›`ªgyLx ej  m

v2
|
r

†K›`ªwegyLx ej (Centrifugal Force): hLb †Kvb e¯‘ e„ËvKvi c‡_ Nyi‡Z _v‡K ZLb †h ej H e„‡Ëi †K‡›`ªi wecixZ
w`‡K cÖ‡qvM K‡i Zv‡K †K›`ªwegyLx ej e‡j| m f‡ii e¯‘ r e¨vmva© wewkó e„ËvKvic‡_ v mg`ªæwZ‡Z Nyi‡Z _vK‡j Zvi
†K›`ªwegyLx ej  m

v2
|
r

http://teachingbd.com















Download original PDF file

03-dynamics.pdf (PDF, 869.03 KB)

Download







Share on social networks







Link to this page



Permanent link

Use the permanent link to the download page to share your document on Facebook, Twitter, LinkedIn, or directly with a contact by e-Mail, Messenger, Whatsapp, Line..




Short link

Use the short link to share your document on Twitter or by text message (SMS)




HTML Code

Copy the following HTML code to share your document on a Website or Blog




QR Code to this page


QR Code link to PDF file 03-dynamics.pdf






This file has been shared publicly by a user of PDF Archive.
Document ID: 0000313673.
Report illicit content