

 [image: PDF Archive]

 	About
	
 Features

 Personal and corporate archive
 Private social network
 Securely receive documents
 Easily share your files
 Online PDF Toolbox
 Permanent QR Codes

	Premium account
	Contact
	Help
	Sign up
	

 Sign in

 2016 >
 April >
 April 17, 2016

 1927 lab 05 06 (PDF)

 File information

Author: Administrator

 This PDF 1.5 document has been generated by MicrosoftÂ® Word 2010, and has been sent on pdf-archive.com on 17/04/2016 at 15:25, from IP address 121.216.x.x.
 The current document download page has been viewed 380 times.

 File size: 367.81 KB (4 pages).

 Privacy: public file

 [image:]

 [image:]

 [image:]

 [image:]

File preview

Hyun Woo Lee (z5061885), Benjamin Xia (z3462450)

COMP1927 LAB 05/06

Test theory

Each sorting algorithm will have characteristics which can be used to identify it. These include

number of accesses, comparisons, insertions, moves, best case time, worst case time etc.

relative to the size of the array to be sorted. However, since we have only been provided with

the program binaries we cannot observe the actual data manipulations taking place, only the

state of the data array before and after sorting. With this in mind, we have selected 4

characteristics which can be tested, these are:

Time to sort a random array

Time to sort an already sorted array

Time to sort a reverse sorted array

Stability

We have identified these 4 characteristics for each of the possible sorting algorithms in this lab,

tabulated below:

Sort

Ave time

Oblivious Bubble

Bubble w/ Early exit

Vanilla insertion

Insertion with bin. Search

Vanilla selection

Quadratic selection

Merge sort

Vanilla Quick

Quick sort median of three

Randomized quick

shell sort powers of two

Shell sort Sedgewick

Bogo

n^2

n^2

n^2

n^2

n^2

n^1.5

nlogn

nlogn

nlogn

nlogn

n^2

nlogn

(n+1)!

Already

sorted

n

n

n

nlogn

n^2

n^1.5

nlogn

n^2

nlogn

nlogn

n

n

(n+1)!

Reverse sorted

Stable

n^2

n^2

n^2

nlogn

n^2

n^1.5

nlogn

n^2

nlogn

nlogn

n^2

nlogn

(n+1)!

no

yes

yes

yes

no

yes

yes

no

no

no

no

no

no

Hyun Woo Lee (z5061885), Benjamin Xia (z3462450)

Note that some of the possible sorts contain identical characteristics. Differentiating between

these sorts will require more specialized tests. For efficiency, the initial stage of testing will

focus on only the 4 characteristics above. The timed tests will be conducted by first generating

a file f items to be sorted, then feeding the data into the sort program. The running time of the

program is found using the time operation’s ‘user’ time. Each test will be conducted 5 times

and the average time recorded. The stability of the sort will be assessed by generating a set of

data containing duplicate keys, the manually assessing the order of the output data.

At this stage, if a unique sort has not been identified, further tests will be used.

Testing Results:

Sort A

The first sort provided was run through the 4 tests and data collected. The timed sort test

results are shown below:

Input size

N

N^2

10000 100000000

20000 400000000

50000 2.5E+09

70000 4.9E+09

100000 1E+10

Time to sort (seconds)

Random Sorted Rev. sort

0.12

0.13

0.12

0.48

0.48

0.45

3

3

2.9

5.7

5.7

5.5

11.7

11.6

11.2

The sort was found to be unstable, as duplicate keys in the input array appeared in the output

in a different order. The 3 sets of sort times are plotted against input size N, shown below:

14

Time (seconds)

12

10

8

Random

6

Sorted

4

Rev. sort

2

0

0

50000

100000

N

150000

Hyun Woo Lee (z5061885), Benjamin Xia (z3462450)

From the above chart, the curves appear to be quadratic. To confirm this, the times were again

plotted, but this time against N2:

14

Time (seconds)

12

10

8

Random

6

Sorted

4

Rev. sort

2

0

0

5E+09

1E+10

1.5E+10

N2

Since the trends are straight liens, they are indeed quadratic, implying a time complexity of

O(n2) for random, already sorted and reverse sorted arrays. Combined with the unstable nature

of the sort, this set of characteristics points to a VANILLA SELECTION SORT.

Sort B

The second sort was put through the same tests, with the data displayed below:

Input size

N

Nlog(N)

10000 92103.4037

50000 540988.914

100000 1151292.55

500000 6561181.69

750000 10145871.4

1000000 13815510.6

Time to sort (seconds)

Random

Sorted

Rev. sort

0.004

0.004

0.004

0.04

0.02

0.02

0.08

0.04

0.03

1.07

0.12

0.17

1.9

0.15

0.29

2.7

0.2

0.4

The sort was found to be unstable using the method described previously. Compared to the

sort A results, sort B was much faster, indicating that it was probably a O(nlogn) sort. The 3

sets of sort times are plotted against input size Nlog(N), shown below:

Hyun Woo Lee (z5061885), Benjamin Xia (z3462450)

3

2.5

Time (seconds)

2

1.5

Random

Sorted

1

Rev. sort

0.5

0

0

-0.5

5000000

10000000

15000000

N log(N)

From the linear trends, it can be assumed that the time complexity of sortB is nlogn for random,

sorted and reverse sorted data. Based on this, as well as the fact that it is unstable, it can be

concluded that sort B is a quick sort (either Median of Three or randomized). Median of three

tends to be slightly faster than randomized pivot selection, however without another sort to

compare against, it is impossible to differentiate the two by speed alone, as it will depend on

the hardware the code is run on as well as the data provided. Writing our own median-of3/randomized quicksort would also not be a reliable way to test, as we would not know how

efficiently the provided sort performs swaps, compares, random number generation, etc

compared to our own.

 Download 1927 lab 05-06

 1927 lab 05-06.pdf (PDF, 367.81 KB)

 Download PDF

 Share this file on social networks

 Link to this page

 Permanent link

 Use the permanent link to the download page to share your document on Facebook, Twitter, LinkedIn, or directly with a contact by e-Mail, Messenger, Whatsapp, Line..

 Copy link

 Short link

 Use the short link to share your document on Twitter or by text message (SMS)

 Copy link

 HTML Code

 Copy the following HTML code to share your document on a Website or Blog

 PDF Document 1927 lab 05-06.pdf
 Copy code

 QR Code to this page

 [image: QR Code link to PDF file 1927 lab 05-06.pdf]

This file has been shared publicly by a user of PDF Archive.

Document ID: 0000361082.

 Report illicit content

 [image: PDF Archive]

 2023 ·
 Legal notice ·
 Terms of use

 Privacy policy / GDPR ·

 Privacy settings ·

 Contact

 Report illicit content ·
 FR ·
 EN

