

 [image: PDF Archive]

 	About
	
 Features

 Personal and corporate archive
 Private social network
 Securely receive documents
 Easily share your files
 Online PDF Toolbox
 Permanent QR Codes

	Premium account
	Contact
	Help
	Sign up
	

 Sign in

 2016 >
 September >
 September 28, 2016

 DeepLearningforRegression (PDF)

 File information

 This PDF 1.5 document has been generated by / Skia/PDF m55, and has been sent on pdf-archive.com on 28/09/2016 at 00:32, from IP address 67.71.x.x.
 The current document download page has been viewed 463 times.

 File size: 299.37 KB (23 pages).

 Privacy: public file

 [image:]

 [image:]

 [image:]

 [image:]

 [image:]

File preview

Deep Learning for Regression

By: The Lazy Programmer

https://lazyprogrammer.me

https://twitter.com/lazy_scientist

https://facebook.com/lazyprogrammer.me

Welcome to this exclusive special report on deep learning for regression. Why did I make this?

I’ve gotten quite a few requests recently for (a) examples using neural networks for regression

rather than classification, and (b) examples using time series.

This tutorial includes both!

We will examine the dataset, and then attempt 3 different approaches to the problem: linear

regression, feedforward neural networks, and recurrent neural networks.

Data Description

Linear Regression

Feedforward Neural Network

Recurrent Neural Network (GRU/LSTM)

Discussion

Data Description

The data is from a popular dataset called the airline passengers dataset. The dataset consists

of monthly totals of airline passengers from January 1949 to December 1960. There are 144

data points in total. The number in the dataset is given in thousands, although we will normalize

our data anyway.

This is a plot of the data (using plain integers on the x-axis):

As you can see, there are multiple trends here.

The first is that there is an overall increase in number of passengers over time.

The second is that there is a periodic pattern, most likely corresponding to summer vacations.

Note that the amplitude of the cycle increases over time.

Because these patterns are obvious, one could model the series as:

yˆ (t) = b + at + A(t)cos(α + ωt)

A(t) = γ t + δ

And that would be another example of “feature engineering”.

But we won’t.

You can download the data yourself from

https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousan

ds-jan-49-dec-60.

I’ve also included it in the repo:

https://github.com/lazyprogrammer/machine_learning_examples

Folder: airline

To load the data, we will use Pandas:

import pandas as pd

If you look at the CSV, you’ll notice that there are 3 lines at the bottom that are irrelevant. You

could delete these manually, but Pandas’ read_csv function includes parameters that allow us

to skip footer rows. It is only supported by the “Python” engine, so we will need to specify that as

well (the default engine is “C”, which is faster).

df = pd.read_csv('international-airline-passengers.csv',

engine='python', skipfooter=3)

The column names are a little crazy so I’ve renamed them:

df.columns = ['month', 'num_passengers']

And then you can plot the data like so:

plt.plot(df.num_passengers)

plt.show()

To ensure that we train and test our model in a fair way, we are going to split the data down the

middle in time into train and test sets.

Typically, we want our models to be trained on all the possible inputs it could see, so that it has

a target to learn from in every “area” of the input space.

Ex. If we trained on X=1..10 and then tried to make a prediction for X=100, that would be a

major extrapolation. We would most likely be wrong.

On the other hand, if we had training data for X=1,2,3,4,5, and then tried to make a prediction

for X=2.5, we could probably be more confident in the answer, since it is close to our training

data.

With the airline passenger data, this could potentially be problematic.

Notice how at the halfway point, things start to really pick up. The amplitude of the periodic

wave increases by a lot, as does the average count.

However, splitting the data like this is the most “fair” because in real life, we want to predict the

future. If it’s currently October, we can’t get the results for December and create a model that

accurately predicts November.

Linear Regression

Our first attempt at modeling the data will make use of linear regression.

Let us be clear about what the inputs and outputs (targets) are.

I want to be able to use past passenger counts to predict future passenger counts.

In particular, I want to predict the passenger count x(t) using x(t-1), x(t-2), etc.

I will not use the month or year, as that would allow me to learn the trends I described in the

previous section.

Using linear regression, this model is:

x(t) = w0 + w1 x(t − 1) + w2 x(t − 2) + w3 x(t − 3)

For predicting x(t) with 3 past data points.

We have a special name for such a model. It is called the “autoregressive” (AR) model.

It’s “regressive” because we are doing regression, and it’s “auto” because we are using the

series to predict itself.

As I always try to teach my students, it doesn’t matter much “what” the data is. We just want to

mold it into our usual problem:

An NxD matrix of inputs called X and and N-length vector called Y.

Suppose we are given the data c(1), c(2), …, c(10). I’m using the letter “c” here to represent the

“count”, to differentiate between X, which is my data matrix into the linear regression model.

My training data would then become:

X1

X2

X3

Y

c(1)

c(2)

c(3)

c(4)

c(2)

c(3)

c(4)

c(5)

c(3)

c(4)

c(5)

c(6)

c(4)

c(5)

c(6)

c(7)

c(5)

c(6)

c(7)

c(8)

c(6)

c(7)

c(8)

c(9)

c(7)

c(8)

c(9)

c(10)

Notice that X is of size 7x3. There can only be 7 data points because the first one we can

predict that makes use of 3 inputs is c(4), and the last one we can predict that exists is c(10).

We can put this into code as follows:

series = df.num_passengers.as_matrix()

N = len(series)

n = N - D

X = np.zeros((n, D))

for d in xrange(D):

X[:,d] = series[d:d+n]

Y = series[D:D+n]

In the above code, D is the number of past data points we want to use to make the prediction. In

the final code, we will loop through various settings of D.

Split the data into train and test sets:

Xtrain = X[:n/2]

Ytrain = Y[:n/2]

Xtest = X[n/2:]

Ytest = Y[n/2:]

Train a model and print the train and test scores (the R2, since this is regression):

model = LinearRegression()

model.fit(Xtrain, Ytrain)

print "train score:", model.score(Xtrain, Ytrain)

print "test score:", model.score(Xtest, Ytest)

Note that we could have implemented linear regression ourselves - both the fit and predict

functions would only be 1 line each. We are just saving ourselves a little trouble by using Sci-Kit

Learn.

Finally, we want to plot the target data along with our model predictions.

plt.plot(series)

train_series = np.empty(n)

train_series[:n/2] = model.predict(Xtrain)

train_series[n/2:] = np.nan

prepend d nan's since the train series is only of size N - D

plt.plot(np.concatenate([np.full(d, np.nan), train_series]))

test_series = np.empty(n)

test_series[:n/2] = np.nan

test_series[n/2:] = model.predict(Xtest)

plt.plot(np.concatenate([np.full(d, np.nan), test_series]))

plt.show()

Lining up the predictions is a little complicated. The full series is of size N, where N = n + D.

Using np.nan means nothing shows up in the plot for that point.

The first d points are nan’s since they don’t have predictions. The next n/2 points are train

predictions. For the test series these should all be nan’s. The final n/2 points are test

predictions. For the train series these should all be nan’s. This ensures that the train and test

predictions will show up in different colors.

All the plots should look something like this:

For the final setting of D=7, we achieve:

train score: 0.850075979734

test score: 0.769876100967

Not bad! The simple linear regression model manages to successfully extrapolate the trend in

the latter half of the data.

The full code can be found in lr.py.

 Download DeepLearningforRegression

 DeepLearningforRegression.pdf (PDF, 299.37 KB)

 Download PDF

 Share this file on social networks

 Link to this page

 Permanent link

 Use the permanent link to the download page to share your document on Facebook, Twitter, LinkedIn, or directly with a contact by e-Mail, Messenger, Whatsapp, Line..

 Copy link

 Short link

 Use the short link to share your document on Twitter or by text message (SMS)

 Copy link

 HTML Code

 Copy the following HTML code to share your document on a Website or Blog

 PDF Document DeepLearningforRegression.pdf
 Copy code

 QR Code to this page

 [image: QR Code link to PDF file DeepLearningforRegression.pdf]

This file has been shared publicly by a user of PDF Archive.

Document ID: 0000487511.

 Report illicit content

 [image: PDF Archive]

 2023 ·
 Legal notice ·
 Terms of use

 Privacy policy / GDPR ·

 Privacy settings ·

 Contact

 Report illicit content ·
 FR ·
 EN

