pset1 .pdf

File information


Original filename: pset1.pdf

This PDF 1.5 document has been generated by TeX / MiKTeX pdfTeX-1.40.17, and has been sent on pdf-archive.com on 10/02/2017 at 03:23, from IP address 18.111.x.x. The current document download page has been viewed 312 times.
File size: 112 KB (2 pages).
Privacy: public file


Download original PDF file


pset1.pdf (PDF, 112 KB)


Share on social networks



Link to this file download page



Document preview


Massachusetts Institute of Technology
Department of Mechanical Engineering
2.087 - Engineering Mathematics: ODEs
Spring, 2017
Problem Set 1
Distributed:
Due:

Tuesday Feb 6, 2017
Tuesday Feb 14. 2017

Problem 1:
Below are several common differential equations. Label the order of each equation, and state whether it is
linear or nonlinear.
(a) (Spring equation) mx00 (t) + bx0 (t) + kx(t) = 0
(b) (Radioactive decay)

dQ
dt

= −rQ(t)

(c) (LRC circuit) LQ00 (t) + RQ0 (t) +

1
C Q(t)

= E(t)

(d) (Logistic equation) u0 (t) = λu(t)(1 − u(t))
(e) (Legendre differential equation) (1 − x2 )y 00 (x) − 2xy 0 (x) + `(` + 1)y(x) = 0
(f) (Compound interest) M 0 (t) = rM (t) + d
(g) (van der Pol equation)

d2 u
dt

+ (u2 − 1) du
dt + u = f (t)

Problem 2:
For each of the following ODEs, draw a direction field for the given differential equation. Based on the
direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at
t = 0, describe this dependency.
(a) y 0 = 3 − y
(b) y 0 = 2y − 5
(c) y 0 = y 2
(d) y 0 = −y(y − 3)
(e) y 0 = y(y − 2)2

Problem 3:
For each of the following, write down a differential equation of the form y 0 = ay + b whose solutions have
the required behavior as t → ∞.
(a) All solutions approach y = 3.
(b) All other solutions diverge from y = 1/3.

1

Problem 4:
For each of the following, draw a direction field for the given differential equation. Based on the direction
field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0,
describe this dependency.
(a) y 0 = −2 + t − y
(b) y 0 = te−2t − 2y
(c) y 0 = 3 sin t + 1 + y

Problem 5:
Show that the nonlinear example dy/dt = y 2 is solved by y = C/(1 − Ct) for every constant C.

Problem 6:
dy/dt = y + 1 is not solved by y = et + t. Substitute y to show that it fails. We can’t just add the solutions
to y 0 = y and y 0 = 1. What number c makes y = et + c into a correct solution?

Problem 7:
What linear differential equation y 0 = a(t)y is satisfied by y(t) = −esin t ?

2


Document preview pset1.pdf - page 1/2

Document preview pset1.pdf - page 2/2

Related documents


pset1
1400 1411
285 294
m140007
diff eq
nonequilibrium statistical operator ijmpb05

Link to this page


Permanent link

Use the permanent link to the download page to share your document on Facebook, Twitter, LinkedIn, or directly with a contact by e-Mail, Messenger, Whatsapp, Line..

Short link

Use the short link to share your document on Twitter or by text message (SMS)

HTML Code

Copy the following HTML code to share your document on a Website or Blog

QR Code

QR Code link to PDF file pset1.pdf