PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact



دليل المعلم رياضيات الصف 12 .pdf


Original filename: دليل المعلم رياضيات الصف 12.pdf

This PDF 1.6 document has been generated by Adobe InDesign CS4 (6.0.5) / Adobe PDF Library 9.0, and has been sent on pdf-archive.com on 15/04/2017 at 14:45, from IP address 92.96.x.x. The current document download page has been viewed 514 times.
File size: 34.2 MB (346 pages).
Privacy: public file




Download original PDF file









Document preview


24CM


(2,3)

31CM




20171438


(2 , 3)







Original Title:

Precalculus
Algebra 2
By:
John A. Carter, Ph. D
Prof. Gilbert J. Cuevas
Roger Day, Ph. D
Carol E. Malloy, Ph. D
Luajean Bryan
Berchie Holliday, Ed. D
Prof. Viken Hovsepian
Ruth M.Casey


 





CONSULTANTS
Mathematical Content
Prof. Viken Hovsepian
Grant A. Fraser, Ph.D
Arthur K. Wayman, Ph.D
Gifted and talented
Shelbi K. Cole
Mathematical Fluency
Robert M. Capraro
Reading and Writing
Releah Cossett Lent
Lynn T. Havens
Graphing Calculator
Ruth M. Casey
Jerry J. Cummins
Test Preperation
Christopher F. Black
Science/Physics
Jane Bray Nelson
Jim Nelson

www.glencoe.com

English Edition Copyright© the McGrawHill CompaniesInc
All rights reserved
Arabic Edition is published by Obeikan under agreement with
The McGrawHill CompaniesInc

www.obeikaneducation.com

©


©




‫‪           ‬‬
‫‪‬‬

‫ﻳﺴﺮﻧﺎ ﺃﻥ ﻧﻘﺪﱢ ﻡ ﺩﻟﻴﻞ ﺍﻟﻤﻌﻠﻢ ﻟﻤﺎﺩﺓ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ‪ ،‬ﺁﻣﻠﻴﻦ ﺃﻥ ﻳﻜﻮﻥ ﻟﻜﻢ ﺍﻟﻤﺮﺷﺪ ﻓﻲ ﺗﺪﺭﻳﺲ‬
‫ﺍﻟﻤﺎﺩﺓ‪ ،‬ﻭﺍﻟﺪﺍﻋﻢ ﻓﻲ ﺗﻘﻮﻳﻢ ﺍﻟﻄﻼﺏ‪ ،‬ﺑﻤﺎ ﻳﺤﻘﻖ ﺍﻷﻫــﺪﺍﻑ ﺍﻟﻤﻨﺸﻮﺩﺓ ﻣﻦ ﺗﺪﺭﻳﺲ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ‪.‬‬

‫‪‬‬
‫‪ ‬‬
‫‪‬‬

‫ﺗﻮﺿﺢ ﻫﺬﻩ ﺍﻟﻤﻘﺪﻣﺔ ﻛﻴﻔﻴﺔ ﺑﻨﺎﺀ ﺍﻟﺴﻠﺴﻠﺔ ﻋﻠﻤ ﹼﹰﻴﺎ ﻭﺗﺮﺑﻮ ﹼﹰﻳﺎ‪ ،‬ﻭﺗﹸﺒﺮﺯ ﺍﻟﻨﻘﺎﻁ ﺍﻟﻤﺤﻮﺭﻳﺔ ﺍﻟﺘﻲ ﻳﺮﻛﺰ ﻋﻠﻴﻬﺎ ﺍﻟﻤﻨﻬﺞ ﻓﻲ ﻫﺬﺍ ﺍﻟﺼﻒ‪،‬‬
‫ﻭﻓﻠﺴﻔﺔ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﻤﺘﻮﺍﺯﻧﺔ ﺃﻓﻘ ﹼﹰﻴﺎ ﻭﺍﻟﻤﺘﺮﺍﺑﻄﺔ ﺭﺃﺳ ﹼﹰﻴﺎ‪ ،‬ﻭﺃﺳﺎﻟﻴﺐ ﺍﻟﺘﺪﺭﻳﺲ ﺍﻟﻤﺘﱠﺒﻌﺔ ﻭﺍﻟﻤﺘﻨﻮﻋﺔ ﻓﻲ ﺍﻟﺪﻟﻴﻞ‪ ،‬ﻭﺃﻧﻮﺍﻉ ﺍﻟﺘﻘﻮﻳﻢ‪،‬‬
‫ﻭﺃﺩﻭﺍﺗﻪ ﺍﻟﻤﻘﺘﺮﺣﺔ‪ ،‬ﺍﻟﺘﻲ ﺗﺮﺍﻋﻲ ﺍﻟﻔﺮﻭﻕ ﺍﻟﻔﺮﺩﻳﺔ ﺑﻴﻦ ﺍﻟﻄﻼﺏ‪.‬‬

‫‪ ‬‬

‫ﹴ‬
‫ﹴ‬
‫ﹴ‬
‫ﻋﺎﻣﺔ ﻋﻠﻴﻪ ﺗﺘﻀﻤﻦ ﻣﺨﻄ ﹰﻄﺎ ﻟﻠﺪﺭﻭﺱ ﻭﺃﻫﺪﺍﻓﻬﺎ‪،‬‬
‫ﻧﻈﺮﺓ‬
‫ﻭﺣﺪﺓ ﺑﺘﻘﺪﻳﻢ‬
‫ﺍﻟﻤﻘﺮﺭ ﺇﻟﻰ ﻭﺣﺪﺍﺕ‪ ،‬ﻭﻳﺒﺪﺃ ﺩﻟﻴﻞ ﺍﻟﻤﻌﻠﻢ ﻓﻲ ﻛﻞ‬
‫ﺗﻢ ﺗﻮﺯﻳﻊ‬
‫ﱠ‬
‫ﱠ‬
‫ﻭﻣﺼﺎﺩﺭ ﺗﺪﺭﻳﺴﻬﺎ‪ ،‬ﻭﺍﻟﺨﻄﺔ ﺍﻟﺰﻣﻨﻴﺔ ﺍﻟﻤﻘﺘﺮﺣﺔ ﻟﻠﺘﺪﺭﻳﺲ‪ ،‬ﺛﻢ ﻳﻘﺪﹼ ﻡ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﻟﻤﻮﺿﻮﻉ ﺍﻟﻮﺣﺪﺓ ﺧﻼﻝ ﺍﻟﺼﻒ ﻭﺍﻟﺼﻔﻮﻑ‬
‫ﺩﻋﻤﺎ ﻟﻠﻤﻌﻠﻢ ﻣﻦ ﺧﻼﻝ ﺻﻔﺤﺔ ﺍﺳﺘﻬﻼﻝ‬
‫ﺍﻷﺧﺮ￯‪ .‬ﻛﻤﺎ ﻳﻘﺘﺮﺡ ﺍﻟﺪﻟﻴﻞ ﺁﻟﻴ ﹰﺔ ﻟﺘﻌﻠﻢ ﻣﻬﺎﺭﺍﺕ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺧﻼﻝ ﻣﻬﺎﺭﺓ ﺍﻟﺪﺭﺍﺳﺔ‪ ،‬ﺛﻢ ﻳﻘﺪﻡ ﹰ‬
‫ﺍﻟﻮﺣﺪﺓ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻓﻲ ﻛﺘﺎﺏ ﺍﻟﻄﺎﻟﺐ‪ ،‬ﻭﻛﻴﻔﻴﺔ ﺍﻻﺳﺘﻔﺎﺩﺓ ﻣﻨﻬﺎ ﻓﻲ ﺗﻘﺪﻳﻢ ﻣﻮﺿﻮﻉ ﺍﻟﻮﺣﺪﺓ‪ ،‬ﻛﻤﺎ ﻳﺒﺮﺯ ﻏﺮﺽ ﺍﻟﻤﻄﻮﻳﺎﺕ ﻭﻭﻇﻴﻔﺘﻬﺎ ﻭﻭﻗﺖ‬
‫ﺍﺳﺘﻌﻤﺎﻟﻬﺎ‪ ،‬ﺛﻢ ﻳﻌﺮﺽ ﻣﺨﻄ ﹰﻄﺎ ﻟﻠﺘﻘﻮﻳﻢ ﺑﺄﻧﻮﺍﻋﻪ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻭﺃﺩﻭﺍﺗﻪ ﺍﻟﻤﺘﻌﺪﺩﺓ‪.‬‬

‫‪ ‬‬

‫ﹴ‬
‫ﹴ‬
‫ﹴ‬
‫ﺩﺭﺱ‪ ،‬ﻭﺑﻌﺪ‬
‫ﻣﺘﻨﻮﻋﺔ‪ ،‬ﺗﺴﺎﻋﺪ ﺍﻟﻤﻌﻠﻢ ﻋﻠﻰ ﺗﺪﺭﻳﺲ ﻛﻞ‬
‫ﺗﺪﺭﻳﺲ‬
‫ﻳﻘﺪﹼ ﻡ ﺍﻟﺪﻟﻴﻞ ﺃﻧﺸﻄ ﹰﺔ ﻣﻘﺘﺮﺣ ﹰﺔ ﺗﺮﺍﻋﻲ ﺍﻟﻔﺮﻭﻕ ﺍﻟﻔﺮﺩﻳﺔ ﺑﻴﻦ ﺍﻟﻄﻼﺏ‪ ،‬ﻭﺑﺄﺳﺎﻟﻴﺐ‬
‫ﹴ‬
‫ﹴ‬
‫ﻣﺤﺪﺩﺓ ﻫﻲ‪:‬‬
‫ﺧﻄﻮﺍﺕ‬
‫ﺫﻟﻚ ﻳﻌﺮﺽ ﺍﻟﺪﻟﻴﻞ ﺍﻟﺪﺭﺱ ﻓﻲ‬
‫‪ ‬ﻳﺒ ﱢﻴﻦ ﺗﺮﺍﺑﻂ ﺍﻟﻤﻬﺎﺭﺍﺕ ﺍﻟﺮﺋﻴﺴﺔ ﻗﺒﻞ ﺍﻟﺪﺭﺱ ﻭﻓﻲ ﺃﺛﻨﺎﺋﻪ ﻭﺑﻌﺪﻩ‪.‬‬

‫ﹴ‬
‫ﻣﻘﺘﺮﺣﺎﺕ ﻟﻠﻤﻌﻠﻢ ﺣﻮﻝ ﻛﻴﻔﻴﺔ ﺗﺪﺭﻳﺲ ﺍﻟﺪﺭﺱ‪ ،‬ﺗﺘﻀﻤﻦ ﺃﺳﺌﻠﺔ ﺑﻨﺎﺀ ﺣﻮﺍﺭﻳ ﹰﺔ ﻭﺃﻧﺸﻄ ﹰﺔ ﻣﻘﺘﺮﺣ ﹰﺔ‪ ،‬ﻭ ﹸﻳﺒﺮﺯ ﺍﻟﻤﺤﺘﻮ￯ ﺍﻟﺮﻳﺎﺿﻲ‬
‫‪ ‬ﻳﻘﺪﹼ ﻡ‬
‫ﻟﻤﻮﺿﻮﻉ ﺍﻟﺪﺭﺱ‪ .‬ﻛﻤﺎ ﻳﻘﺪﹼ ﻡ ﺃﻣﺜﻠ ﹰﺔ ﺇﺿﺎﻓﻴ ﹰﺔ ﻟﻠﻤﻌﻠﻢ‪.‬‬
‫ﹴ‬
‫ﺗﺪﺭﻳﺒﺎﺕ ﻣﺘﻨﻮﻋ ﹰﺔ ﺗﺤﻘﻖ ﺃﻫﺪﺍﻑ ﺍﻟﺪﺭﺱ ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﻼﺏ‪.‬‬
‫‪ ‬ﻳﺘﻀﻤﻦ‬

‫ﻣﻘﺘﺮﺣﺎ ﻟﻠﻤﻌﻠﻢ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻣﺪ￯ ﺍﺳﺘﻴﻌﺎﺏ ﺍﻟﻄﻼﺏ ﺍﻟﻤﻔﺎﻫﻴﻢ ﻭﺇﺗﻘﺎﻧﻬﻢ ﺍﻟﻤﻬﺎﺭﺍﺕ‬
‫‪ ‬ﻳﻘﺪﹼ ﻡ ﻣﻘﺘﺮﺣﺎﺕ ﻟﺘﻘﻮﻳﻢ ﺍﻟﺪﺭﺱ‪ ،‬ﻛﻤﺎ ﻳﺘﻀﻤﻦ‬
‫ﹰ‬
‫ﺍﻟﻤﻘﺪﹼ ﻣﺔ ﻓﻲ ﺍﻟﺪﺭﺱ‪ ،‬ﻭﻳﻌﺮﺽ ﺍﻟﺪﻟﻴﻞ ﺁﻟﻴ ﹰﺔ ﻟﻤﺘﺎﺑﻌﺔ ﺍﻟﻤﻄﻮﻳﺎﺕ‪.‬‬
‫ﹴ‬
‫ﻣﻔﺼﻠ ﹰﺔ ﻟﺒﻌﺾ ﺍﻷﺳﺌﻠﺔ ﻭﺍﻟﺘﻤﺎﺭﻳﻦ‪.‬‬
‫ﻛﻤﺎ ﻳﻘﺪﹼ ﻡ ﺍﻟﺪﻟﻴﻞ ﻓﻲ ﻛﻞ ﺩﺭﺱ ﺇﺟﺎﺑﺎﺕ ﹼ‬

‫‪ ‬‬

‫ﹴ‬
‫ﻭﺁﻟﻴﺎﺕ ﻟﻤﻌﺎﻟﺠﺔ ﺍﻷﺧﻄﺎﺀ ﻭﺍﻟﺼﻌﻮﺑﺎﺕ ﻟﺪ￯‬
‫ﺗﻘﺪﹼ ﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺃﺳﺎﻟﻴﺐ ﻣﺘﻨﻮﻋ ﹰﺔ ﻟﺘﻘﻮﻳﻢ ﺍﻟﻄﻼﺏ )ﺍﻟﺘﺸﺨﻴﺼﻲ ﻭﺍﻟﺘﻜﻮﻳﻨﻲ ﻭﺍﻟﺨﺘﺎﻣﻲ(‪،‬‬
‫ﺍﻟﻄﻼﺏ‪.‬‬
‫ﺍﻟﻤﻘﺮﺭ‪،‬‬
‫ﻭﻧﺤﻦ ﺇﺫ ﻧﻘﺪﹼ ﻡ ﻫﺬﺍ ﺍﻟﺪﻟﻴﻞ ﻟﺰﻣﻼﺋﻨﺎ ﺍﻟﻤﻌﻠﻤﻴﻦ ﻭﺍﻟﻤﻌﻠﻤﺎﺕ‪ ،‬ﻟﻨﺄﻣﻞ ﺃﻥ ﻳﺤﻮﺫ ﺍﻫﺘﻤﺎﻣﻬﻢ‪ ،‬ﻭﻳﻠ ﱢﺒﻲ ﻣﺘﻄﻠﺒﺎﺗﻬﻢ ﻟﺘﺪﺭﻳﺲ ﻫﺬﺍ‬
‫ﱠ‬
‫ﻭﻳﺴﺎﻋﺪﻫﻢ ﻋﻠﻰ ﺃﺩﺍﺀ ﺭﺳﺎﻟﺘﻬﻢ‪.‬‬
‫‪‬‬


8A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
8C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
8E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 
10  1
 -1
15  1
 -2
20  1
 -3
24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
25  1
 -4
31
1-5
32 1
 -5
38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
43A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



44A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
44C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
44D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
44E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 
46  2
 -1
54 2
 -2
62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
63 2
 -3
72  2
 -4
75
2-4
77-80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
81A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


82A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
82C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
82D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
82E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 
84  3
 -1

92 
100
106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
107 
113 
118. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
123. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
123A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3
 -2
3-3
3
 -4
3
 -5


124A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
124C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
124D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
124E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 
126 4-1
133 4
 -2
142  4
 -3
153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
157A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 


158A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
158C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
158D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
158E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 
160   5-1
169  5-2
179 
5-3
181  5
 -3
187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
188  5-4
196 5
 -5
205  5
 -6
212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
217A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 



 2

 1

‫ﻳﻌﺪ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﻟﻠﻤﺤﺘﻮ￯ ﻋﻤﻠﻴ ﹰﺔ ﻣﻬﻤ ﹰﺔ ﺗﺴﺎﻋﺪ ﻃﻼﺑﻚ ﻋﻠﻰ ﺍﻟﺘﺤﻘﻖ ﻣﻦ‬
‫ ﻭﻫﺬﺍ ﻳﻤﻨﺤﻚ‬.‫ ﻭﺗﺘﺎﺑﻌﻪ ﻣﻦ ﻣﺴﺘﻮ￯ ﺇﻟﻰ ﺁﺧﺮ‬،￯‫ﺍﻟﺘﺴﻠﺴﻞ ﺍﻟﺪﻗﻴﻖ ﻟﻠﻤﺤﺘﻮ‬
،‫ﺍﻟﺜﻘﺔ ﺑﺄﻥ ﺍﻟﻤﺤﺘﻮ￯ ﻳﺘﻢ ﺗﻘﺪﻳﻤﻪ ﻭﺗﻌﺰﻳﺰﻩ ﻭﺗﻘﻮﻳﻤﻪ ﻓﻲ ﺍﻷﻭﻗﺎﺕ ﺍﻟﻤﻨﺎﺳﺒﺔ‬
‫ﻣﻤﺎ ﻳﻤﻜﹼﻨﻚ ﻣﻦ‬
‫ ﱠ‬،‫ﺍﻟﻤﺒﺮﺭ‬
‫ﻛﻤﺎ ﻳﺴﺎﻋﺪ ﻋﻠﻰ ﺳﺪﱢ ﺍﻟﺜﻐﺮﺍﺕ ﻭﺗﺠﻨﱡﺐ ﺍﻟﺘﻜﺮﺍﺭ ﻏﻴﺮ ﹼ‬
.‫ﺗﻮﺟﻴﻪ ﺗﺪﺭﻳﺴﻚ ﻭﺗﻜﻴﻴﻔﻪ ﻟﻴﺘﻼﺀﻡ ﻣﻊ ﺣﺎﺟﺎﺕ ﺍﻟﻄﻼﺏ‬

‫ﺇﻥ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﺍﻟﻘﻮﻱ ﺑﻴﻦ ﺍﻷﺳﺎﻟﻴﺐ ﺍﻟﺘﺪﺭﻳﺴﻴﺔ ﺑﺪ ﹰﺀﺍ ﻣﻦ ﺍﻟﺼﻒ ﺍﻷﻭﻝ‬
،‫ ﺇﺫ ﺗﻌﻤﻞ ﺍﻟﻤﻔﺮﺩﺍﺕ‬،‫ﺴﻬﻞ ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺍﻻﻧﺘﻘﺎﻝ ﻣﻦ ﻣﺮﺣﻠﺔ ﺇﻟﻰ ﻣﺮﺣﻠﺔ‬
‫ﹸﻳ ﱢ‬
‫ﻭﺍﻟﺘﻘﻨﻴﺎﺕ ﻭﺍﻟﻮﺳﺎﺋﻞ ﺍﻟﺤﺴﻴﺔ ﻭﺧﻄﺔ ﺍﻟﺪﺭﺱ ﻭﺍﻟﻤﻌﺎﻟﺠﺔ ﻋﻠﻰ ﺍﻟﺘﻘﻠﻴﻞ ﻣﻦ‬
‫ﻋﻮﺍﻣﻞ ﺍﻟﺼﻌﻮﺑﺔ ﻭﺍﻟﺘﺸﻮﻳﺶ ﺍﻟﺘﻲ ﻳﻮﺍﺟﻬﻬﺎ ﺑﻌﺾ ﺍﻟﻄﻼﺏ ﻋﻨﺪﻣﺎ ﻳﻨﺘﻘﻠﻮﻥ ﻋﺒﺮ‬
.‫ﺍﻟﺼﻔﻮﻑ ﺍﻟﻤﺨﺘﻠﻔﺔ‬

 3

،‫ﺻﻒ ﻵﺧﺮ‬
‫ﺗﺸﺘﻤﻞ ﺻﻔﺤﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﻋﻠﻰ ﺗﺼﺎﻣﻴﻢ ﺑﺼﺮﻳﺔ ﻣﺘﺴﻘﺔ ﻣﻦ‬
‫ﱟ‬
‫ﹴ‬
‫ ﻛﻤﺎ ﺗﺰﺩﺍﺩ‬،‫ﺗﺴﺎﻋﺪ ﺍﻟﻄﻼﺏ ﻋﻠﻰ ﺍﻻﻧﺘﻘﺎﻝ ﻣﻦ ﻣﺮﺣﻠﺔ ﺇﻟﻰ ﺃﺧﺮ￯ ﺑﺴﻼﺳﺔ‬
‫ﺩﺍﻓﻌﻴﺘﻬﻢ ﻟﻠﺘﻌﻠﻢ ﻭﺍﻟﻨﺠﺎﺡ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﻃﺮﻳﻘﺔ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﻫﺬﻩ ﺍﻟﺼﻔﺤﺎﺕ‬
.‫ﻣﺄﻟﻮﻓ ﹰﺔ ﻟﺪﻳﻬﻢ‬

21cm

21cm

14.5mm
21cm























(2,3)


20171438
















(2,3)

27.5cm





















2017 1438

27.5cm

(2,3)



(2,3)


20171438

20171438
























21cm



T1


Related documents


12
stud welding auction catalog
bcom 1st syylbus
shortcv
emba evening syllabus mgt hstu
to publish


Related keywords