PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Send a file File manager PDF Toolbox Search Help Contact



T test ANOVA NonParametric .pdf



Original filename: T-test ANOVA NonParametric.pdf

This PDF 1.5 document has been generated by / Skia/PDF m64, and has been sent on pdf-archive.com on 22/11/2017 at 11:24, from IP address 210.18.x.x. The current document download page has been viewed 99 times.
File size: 269 KB (4 pages).
Privacy: public file




Download original PDF file









Document preview


Compare​ ​the​ ​Testing​ ​Group​ ​Differences​ ​using​ ​T-tests​,​ ​ANOVA​,​ ​and
Nonparametric​ ​TESTS​​ ​|​ ​Statswork
The main purpose of this blog is to understand the Testing Group Differences
using​ ​T-tests​,​ ​ANOVA​,​ ​and​ ​Nonparametric​​ ​Measures.
Choosing the right test for your ​data analysis is a very difficult task particularly
identifying the Different methods from testing group differences is the Biggest
challenging task. It is important to have to in-depth Knowledge to understand
and calculate ​T-tests​, ​ANOVA​, and Nonparametric, brief interpretation of the
output. In order to choose the right statistical test, when analyzing the data from
an experiment, we must have ​a good understanding of some basic statistical
terms​ ​and​ ​concepts​:

©​ ​2017-2018​ ​All​ ​Rights​ ​Reserved,​ ​No​ ​part​ ​of​ ​this​ ​document​ ​should​ ​be​ ​modified/used​ ​without​ ​prior​ ​consent
Statswork​ ​™​ ​ ​-​ ​ ​www.statswork.com
INDIA:​ ​Nungambakkam,​ ​Chennai​ ​–​ ​600​ ​034
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​UK:​ ​The​ ​Portergate,​ ​Ecclesall​ ​Road,​ ​Sheffield,​ ​S11​ ​8NX

Test​ ​for​ ​Normality:
Every data must follow certain distribution. But we have to find the appropriate
distribution from goodness of fit test. So, our data is checked through each and
every distribution. Hence, goodness of fit test is very tedious. This way of
estimation of data is called by parametric tests. Parametric tests always give the
reliable​ ​estimated​ ​value.
If the data follow the normal distribution, then we can use parametric statistical
tests. According to the central limit theorem, if the sample size is large, all data
must​ ​follow​ ​the​ ​normal​ ​distribution​.
List​ ​of​ ​parametric​ ​tests​ ​and​ ​their​ ​usage?
● Independent​ ​sample​ ​t​ ​test​ ​–​ ​Compare​ ​means​ ​between​ ​two​ ​groups
● Paired​ ​sample​ ​t​ ​test​ ​–​ ​Compare​ ​means​ ​between​ ​related​ ​groups
● ANOVA​ ​–​ ​Compare​ ​the​ ​means​ ​between​ ​two​ ​or​ ​more​ ​distinct​ ​groups
● Pearson​ ​correlation​ ​coefficient​ ​–​ ​Relationship​ ​between​ ​two​ ​variables.
List​ ​of​ ​non-parametric​ ​tests​ ​and​ ​their​ ​usage?
● Mann-Whitney​ ​U​ ​test​ ​–​ ​Compare​ ​mean​ ​rank​ ​between​ ​two​ ​groups
● Friedman test – Compare mean rank between three or more related
groups
● Kruskal-Wallis test – Compare the mean rank between two or more
distinct​ ​groups
● Spearman’s​ ​rank​ ​correlation​ ​–​ ​Relationship​ ​between​ ​two​ ​variables.

©​ ​2017-2018​ ​All​ ​Rights​ ​Reserved,​ ​No​ ​part​ ​of​ ​this​ ​document​ ​should​ ​be​ ​modified/used​ ​without​ ​prior​ ​consent
Statswork​ ​™​ ​ ​-​ ​ ​www.statswork.com
INDIA:​ ​Nungambakkam,​ ​Chennai​ ​–​ ​600​ ​034
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​UK:​ ​The​ ​Portergate,​ ​Ecclesall​ ​Road,​ ​Sheffield,​ ​S11​ ​8NX

Comparing Group Means: The ​T-test and One-way ​ANOVA Using
STATA,​ ​SAS,​ ​and​ ​SPSS
While the t-test is inadequate to comparing means of two groups, one-way
ANOVA can compare more than two groups. Therefore, the t-test is considered
a special case of one-way ANOVA. These analyses do not, however, necessarily
imply any causality (i.e., a causal relationship between the left-hand and
right-hand​ ​side​ ​variables).
Table​ ​1​ ​compares​ ​the​ ​t-test​ ​and​ ​one-way​ ​ANOVA.

Table​ ​1.​ ​Comparison​ ​between​ ​the​ ​T-test​ ​and​ ​One-way
ANOVA
​ ​ ​ ​ ​ ​T-test

LHS
(Dependent)

RHS
(Independent)

One-way​ ​ANOVA

Interval​ ​or​ ​ratio
variable

Interval​ ​or​ ​ratio
variable

Binary​ ​variable​ ​with
only​ ​two​ ​groups

Categorical​ ​variable
(mORE​ ​THAN​ ​2
GROUPS)

©​ ​2017-2018​ ​All​ ​Rights​ ​Reserved,​ ​No​ ​part​ ​of​ ​this​ ​document​ ​should​ ​be​ ​modified/used​ ​without​ ​prior​ ​consent
Statswork​ ​™​ ​ ​-​ ​ ​www.statswork.com
INDIA:​ ​Nungambakkam,​ ​Chennai​ ​–​ ​600​ ​034
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​UK:​ ​The​ ​Portergate,​ ​Ecclesall​ ​Road,​ ​Sheffield,​ ​S11​ ​8NX

Null
Hypothesis

µ1​ ​=​ ​µ​ ​2

µ1​ ​=​ ​µ​ ​2​ ​=​ ​µ​ ​3​ ​=…

Prob.
Distribution

T​ ​distribution

F​ ​distribution

Writing a research paper for statistical related paper play a critical role when we
are testing group differences using ​T-tests​, ​ANOVA​, and ​Nonparametric TEST​.
Choosing the right statistical guidance for your Comparing Group Means will
help​ ​to​ ​complete​ ​your​ ​research​ ​paper​ ​as​ ​soon​ ​as​ ​possible.

©​ ​2017-2018​ ​All​ ​Rights​ ​Reserved,​ ​No​ ​part​ ​of​ ​this​ ​document​ ​should​ ​be​ ​modified/used​ ​without​ ​prior​ ​consent
Statswork​ ​™​ ​ ​-​ ​ ​www.statswork.com
INDIA:​ ​Nungambakkam,​ ​Chennai​ ​–​ ​600​ ​034
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​UK:​ ​The​ ​Portergate,​ ​Ecclesall​ ​Road,​ ​Sheffield,​ ​S11​ ​8NX


T-test ANOVA NonParametric.pdf - page 1/4
T-test ANOVA NonParametric.pdf - page 2/4
T-test ANOVA NonParametric.pdf - page 3/4
T-test ANOVA NonParametric.pdf - page 4/4

Related documents


PDF Document t test anova nonparametric
PDF Document sw sample work
PDF Document statswork samples peer new version
PDF Document how statistical peerreviewing is helping researchers
PDF Document infographics pdf
PDF Document storyboard pdf


Related keywords