PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact

Unit Commitment Towards Decarbonized Network Facing Fixed and Stochastic Resources Applying Water Cycle Optimization.pdf

Preview of PDF document untitled-pdf-document.pdf

Page 1...19 20 21

Text preview

Energies 2018, 11, 1140







21 of 21

Li, K.; Xue, Y.; Cui, S.; Niu, Q.; Yang, Z.; Luk, P. Advanced computational methods in energy, power, electric
vehicles and their integration. In Proceedings of the International Conference on Life System Modeling and
Simulation (LSMS2017) and International Conference on Intelligent Computing for Sustainable Energy and
Environment (ICSEE 2017), Nanjing, China, 22–24 September 2017; Part III. Springer: Berlin, Germany, 1842.
Wedyan, A.; Whalley, J.; Narayanan, A. Hydrological Cycle Algorithm for Continuous Optimization
Problems. J. Glob. Optim. 2017, 37, 405–436. [CrossRef]
Moradi, M.; Sadollah, A.; Eskandar, H.; Eskandarc, H. The application of water cycle algorithm to portfolio
selection. J. Econ. Res. Ekon. Istraž. 2017, 30, 1277–1299.
Yanjun, K.; Yadong, M.; Weinan, L.; Xianxun, W.; Yue, B. An enhanced water cycle algorithm for optimization
of multi-reservoir systems. In Proceedings of the 2017 IEEE/ACIS 16th International Conference on
Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017.
Eskandara, H.; Sadollahb, H.; Bahreininejadb, A. Weight Optimization of Truss Structures Using Water Cycle
Algorithm. Int. J. Optim. Civ. Eng. 2013, 3, 115–129.
Sadollah, A.; Eskandar, H.; Kim, J. Water cycle algorithm for solving constrained multi-objective optimization
problems. Appl. Soft Comput. 2015, 27, 279–298. [CrossRef]
World Bank and Ecofys. Carbon Pricing Watch 2017. 2017. Available online: https://openknowledge.
worldbank.org/handle/10986/26565, (accessed on 3 March 2018).
Tung, N.S.; Bhadoria, A.; Kaur, K.; Bhadauria, S. Dynamic programming model based on cost minimization
algorithms for thermal generating units. Int. J. Enhanc. Res. Sci. Technol. Eng. 2012, 1, 19–27.
Thakur, N.; Titare, L.S. Determination of unit commitment problem using dynamic programming. Int. J. Nov.
Res. Electr. Mech. Eng. 2016, 3, 24–28.
Shi, J.; Dong, X.; Zhao, T.; Du, Y.; Liu, H.; Wang, Z.; Zhu, D.; Xiong, C.; Jiang, L.; Shi, J.; et al. The Water Cycle
Observation Mission (WCOM): Overview. In Proceedings of the IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016.
Bozorg-Haddad, O.; Solgi, M.; Loáiciga, H.A. Meta-Heuristic and Evolutionary Algorithms for Engineering
Optimization, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 231–240.
Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic
optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012,
110–111, 151–166. [CrossRef]
He, D.; Tan, Z.; Harley, R.G. Chance constrained unit commitment with wind generation and
superconducting magnetic energy storages. In Proceedings of the IEEE Power and Energy Society General
Meeting, San Diego, CA, USA, 22–26 July 2012.
Saber, A.Y.; Venayagamoorthy, G.K. Efficient utilization of renewable energy sources by gridable vehicles in
cyber-physical energy systems. IEEE Syst. J. 2010, 4, 285–294. [CrossRef]
International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2017; International
Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018; Available online: http://www.irena.
org/publications/2018/Jan/Renewable-power-generation-costs-in-2017 (accessed on 18 March 2018).
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).