PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Send a file File manager PDF Toolbox Search Help Contact



NASA Replacing Layups and Braiding with Robots Rock West Composites .pdf


Original filename: NASA Replacing Layups and Braiding with Robots - Rock West Composites.pdf
Title: Default
Author: Anthony Carter

This PDF 1.5 document has been generated by Microsoft® Office Word 2007, and has been sent on pdf-archive.com on 15/04/2019 at 11:13, from IP address 111.125.x.x. The current document download page has been viewed 16 times.
File size: 561 KB (2 pages).
Privacy: public file




Download original PDF file









Document preview


NASA Replacing Layups and Braiding with Robots
Turning carbon fiber thread into carbon fiber reinforced plastics (CFRP) usually involves some sort of process involving
manual layups, braiding, or spinning. Creating a car door panel is a good example. Carbon fiber material is laid into a
tool, impregnated with an epoxy resin, and put under heat and pressure to cure. But what if the part you’re working on
is so big that manual layups are impractical?

Figure 1- The Electroimpact robot’s head has 16 spools of carbon fibers that it releases in precise patterns to make parts of varying
shapes and sizes. Photo Source: NASA, Marshall Space Flight Center, and Fred Deaton

NASA has found itself in just such a position for years. As they continue working on developing the next generation of
solid rocket boosters that they hope will propel deep space exploration missions, engineers have been thinking bigger
and more powerful. At some point though, creating rocket bodies via manual layups becomes too time-consuming and
costly. NASA needs a solution. The good news is that they've found one.
Enter the Robot
Up until recently, the most effective way to build rocket bodies out of carbon fiber was to start by building a tool.
Carbon fiber prepregs would be laid inside that tool, either manually or with the use of a machine. The rest of the
process is just as you would expect: fully impregnating a layup with epoxy resin, vacuum bagging, and putting the whole
thing in an autoclave. Now, imagine the work involved in producing a rocket body that is 26 feet in diameter.
NASA's current rocket bodies are among the largest ever built. To say they are unwieldy is an understatement. So NASA
no longer produces them using manual layups. Instead, they have invested in a robot that can do the job in significantly
less time and with greater accuracy. The robot is installed at NASA's facility at the Marshall Space Flight Center in
Huntsville, AL.
This incredible machine features on arm with an articulated head holding up to 16 spools of carbon fiber threads. At 21
feet long, the arm is more than capable of doing the job. It is mounted on a 40-foot track that allows it to simultaneously
lay down 16 threads inside the tool quickly and efficiently. And should the head of the robot have to be changed for a
different project, engineers can do it in under a minute.

Better Ways of Fabricating
There are a lot more details about NASA's robot we could get into if we had the space. The point here is that NASA and
one of its technology partners has come up with a better way of fabricating massive rocket bodies. What they are
learning will undoubtedly benefit the private sector at some point down the road.
Along those lines, did you know that memory foam began its life as a product for the space program? Indeed, memory
foam was originally developed in the mid-1960s as a material for spacecraft cushions. Engineers created it to be a
material capable of handling the incredible G-forces at take-off. They created it to be a temperature-sensitive foam that
would return to its original shape once weight and pressure were removed.
Their memory foam worked so well that it was eventually released to the private sector. From that original material we
now enjoy memory foam mattresses, pillows, etc. NASA's need for better seat cushions in space gave rise to all of the
memory foam products we enjoy today.
Likewise, fabricating body rockets using a robot will prove to be commercially viable at some point in the future. In the
meantime, robotics is making it possible for NASA to push the envelope in terms of the size of its rocket bodies. That
could mean incredibly good things for deep space exploration.


NASA Replacing Layups and Braiding with Robots - Rock West Composites.pdf - page 1/2
NASA Replacing Layups and Braiding with Robots - Rock West Composites.pdf - page 2/2

Related documents


PDF Document untitled pdf document 2
PDF Document 50i18 ijaet0118706 v6 iss6 2745 2757
PDF Document untitled pdf document 2
PDF Document ijeas0406011
PDF Document rs25 justification for other than full
PDF Document ijetr2204


Related keywords