PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact


Search


PDF Archive search engine
Last database update: 12 August at 05:10 - Around 220000 files indexed.

Show results per page

Results for «arbitrary»:


Total: 500 results - 0.068 seconds

HIOKI U8793 ENG 100%

ARBITRARY WAVEFORM GENERATOR UNIT U8793 Recorders Memory HiCorders make testing and experimentation convenient.

https://www.pdf-archive.com/2015/12/25/hioki-u8793-eng/

25/12/2015 www.pdf-archive.com

5090 w10 qp 11 92%

A B rate of reaction / arbitrary units rate of reaction / arbitrary units 0 10 20 30 40 50 60 0 20 30 40 temperature / °C temperature / °C C D rate of reaction / arbitrary units 50 60 50 60 rate of reaction / arbitrary units 0 10 20 30 40 50 60 0 temperature / °C 5 10 10 20 30 40 temperature / °C Lack of nitrate ions (NO3–) in flowering plants causes yellowing of leaves and poor growth whereas lack of magnesium ions (Mg2+) causes yellowing between veins of leaves.

https://www.pdf-archive.com/2016/06/09/5090-w10-qp-11/

09/06/2016 www.pdf-archive.com

5090 w10 ms 61 91%

x-axis labelled light intensity / arbitrary units and y-axis labelled carbon dioxide intake / arbitrary units ;

https://www.pdf-archive.com/2016/06/09/5090-w10-ms-61/

09/06/2016 www.pdf-archive.com

5090 s12 qp 11 89%

A B mass of potato after three hours / g mass of potato after three hours / g sucrose concentration / arbitrary units sucrose concentration / arbitrary units C D mass of potato after three hours / g mass of potato after three hours / g sucrose concentration / arbitrary units 4 sucrose concentration / arbitrary units Starch is digested to maltose by the enzyme amylase.

https://www.pdf-archive.com/2016/06/09/5090-s12-qp-11/

09/06/2016 www.pdf-archive.com

5090 s12 qp 12 89%

A B mass of potato after three hours / g mass of potato after three hours / g sucrose concentration / arbitrary units sucrose concentration / arbitrary units C D mass of potato after three hours / g mass of potato after three hours / g sucrose concentration / arbitrary units 4 sucrose concentration / arbitrary units Starch is digested to maltose by the enzyme amylase.

https://www.pdf-archive.com/2016/06/09/5090-s12-qp-12/

09/06/2016 www.pdf-archive.com

l-bacon-mathgen 87%

Let W˜ ≤ kρk be arbitrary.

https://www.pdf-archive.com/2014/10/20/l-bacon-mathgen/

20/10/2014 www.pdf-archive.com

dac v3.1 short instruction 85%

arbitrary, Name: arbitrary, Activation:

https://www.pdf-archive.com/2016/04/21/dac-v3-1-short-instruction/

21/04/2016 www.pdf-archive.com

Administrative Law-LawStudent-BD 85%

In this sense the concept of 'La Principe the Legality' was opposed to arbitrary powers.

https://www.pdf-archive.com/2017/06/16/administrative-law-lawstudent-bd/

16/06/2017 www.pdf-archive.com

tyo 84%

Paakkonen Abstract Let a = X be arbitrary.

https://www.pdf-archive.com/2015/03/19/tyo/

19/03/2015 www.pdf-archive.com

Uniqueness in Lie Theory 83%

Let G = 2 be arbitrary.

https://www.pdf-archive.com/2012/11/12/uniqueness-in-lie-theory/

12/11/2012 www.pdf-archive.com

Math in CS 81%

67 5.3 Arithmetic with an Arbitrary Modulus .

https://www.pdf-archive.com/2014/10/14/math-in-cs/

14/10/2014 www.pdf-archive.com

5090 w07 qp 6 80%

1.1 • • • the bubbles given off in one minute were counted the light intensity was then changed after waiting 5 minutes the new rate was counted, and so on The results of one experiment are given in Table 1.1 Table 1.1 light intensity / arbitrary units rate of photosynthesis / bubbles per minute 2 4 3 7 4 10 5 12 7 13 9 14 10 14 13 14 For Examiner’s Use For Examiner’s Use 3 (a) (i) On the grid below construct a graph from the information in Table 1.1.

https://www.pdf-archive.com/2016/06/10/5090-w07-qp-6/

10/06/2016 www.pdf-archive.com

5090 w10 qp 61 79%

Table 1.1 (a) (i) light intensity / arbitrary units carbon dioxide intake / arbitrary units 0 – 0.5 2 1.0 4 2.5 6 4.0 8 4.5 12 4.8 16 4.7 Construct a graph on the grid below, from the figures in Table 1.1.

https://www.pdf-archive.com/2016/06/09/5090-w10-qp-61/

09/06/2016 www.pdf-archive.com

GRIMM FEMA 79%

In an attempt to draw a close to their Sandy embarrassment, NFIP executives set an arbitrary October 25th deadline for the claims review.

https://www.pdf-archive.com/2017/10/06/grimm-fema/

06/10/2017 www.pdf-archive.com

Wing Structural Technical Paper 1 79%

Our method is flexible enough to address wings of arbitrary outer mould line geometry lofted according to customary principles (see Figure 1).

https://www.pdf-archive.com/2014/12/31/wing-structural-technical-paper-1/

31/12/2014 www.pdf-archive.com

CanIndifferenceVindicateInduction 79%

    Fool Me Once: Can Indifference Vindicate Induction?  Roger White (2015) sketches an ingenious new solution to the problem of induction. It argues on  a priori ​  grounds that the world is more likely to be induction­friendly than induction­unfriendly.  The argument relies primarily on the principle of indifference, and, somewhat surprisingly,  assumes little else. If inductive methods could be vindicated in anything like this way, it would  be quite a groundbreaking result. But there are grounds for pessimism about the envisaged  approach. This paper shows that in the crucial test cases White concentrates on, the principle of  indifference actually renders induction no more accurate than random guessing. It then diagnoses  why the indifference­based argument seems so intuitively compelling, despite being ultimately  unsound.  1 An Indifference­Based Strategy  White begins by imagining that we are “apprentice demons” tasked with devising an  induction­unfriendly world ​  – a world where inductive methods tend to be unreliable. To  simplify, we imagine that there is a single binary variable that we control (such as whether the  sun rises over a series of consecutive days). So, in essence, the task is to construct a binary  sequence such that – if the sequence were revealed one bit at a time – an inductive reasoner  would fare poorly at predicting its future bits. This task, it turns out, is surprisingly difficult. To  see this, it will be instructive to consider several possible strategies for constructing a sequence  that would frustrate an ideal inductive predictor.  Immediately, it is clear that we should avoid uniformly patterned sequences, such as:   00000000000000000000000000000000   or  01010101010101010101010101010101.  ­1­      Sequences like these are quite kind to induction. Our inductive reasoner would quickly latch onto  the obvious patterns these sequences exhibit. A more promising approach, it might seem, is to  build an apparently patternless sequence:  00101010011111000011100010010100  ​ But, importantly, while induction will not be particularly ​ ​ reliable at predicting the terms of this  sequence, it will not be particularly ​unreliable here either. Induction would simply be silent  about what a sequence like this contains. As White puts it, “ In order for... induction to be  applied, our data must contain a salient regularity of a reasonable length” (p. 285). When no  pattern whatsoever can be discerned, presumably, induction is silent. (We will assume that the  inductive predictor is permitted to suspend judgment whenever she wishes.) The original aim  was not to produce an induction­neutral sequence, but to produce a sequence that elicits errors  from induction. So an entirely patternless sequence will not suffice. Instead, the  induction­unfriendly sequence will have to be more devious, building up seeming patterns and  then violating them. As a first pass, we can try this:  00000000000000000000000000000001  Of course, this precise sequence is relatively friendly to induction. While our inductive predictor  will undoubtedly botch her prediction of the final bit, it is clear that she will be able to amass a  long string of successes prior to that point. So, on balance, the above sequence is quite kind to  induction – though not maximally so.   In order to render induction unreliable, we will need to elicit more errors than correct  predictions. We might try to achieve this as follows:  00001111000011110000111100001111  ­2­      The idea here is to offer up just enough of a pattern to warrant an inductive prediction, before  pulling the rug out – and then to repeat the same trick again and again. Of course, this precise  sequence would not necessarily be the way to render induction unreliable: For, even if we did  manage to elicit an error or two from our inductive predictor early on, it seems clear that she  would eventually catch on to the exceptionless higher­order pattern governing the behavior of  the sequence.  The upshot of these observations is not that constructing an induction­unfriendly sequence is  impossible. As White points out, constructing such a sequence should be possible, given any  complete description of how exactly induction works (p. 287). Nonetheless, even if there are a  few special sequences that can frustrate induction, it seems clear that such sequences are fairly  few and far between. In contrast, it is obviously very easy to ​corroborate induction (i.e. to  construct a sequence rendering it thoroughly reliable). So induction is relatively  un­frustrate­able. And it is worth noting that this property is fairly specific to induction. For  example, consider an inferential method based on the gambler’s fallacy, which advises one to  predict whichever outcome has occurred less often, overall. It would be quite easy to frustrate  this method thoroughly (e.g. ​00000000…​).   So far, we have identified a highly suggestive feature of induction. To put things roughly, it  can seem that:   * Over a large number of sequences, induction is thoroughly reliable.   * Over a large number of sequences, induction is silent (and hence, neither reliable nor unreliable).  * Over a very small number of sequences (i.e. those specifically designed to thwart induction),  induction is unreliable (though, even in these cases, induction is still silent much of the time).  ­3­      Viewed from this angle, it can seem reasonable to conclude that there are ​a priori grounds for  confidence that an arbitrary sequence is not induction­unfriendly. After all, there seem to be far  more induction­friendly sequences than induction­unfriendly ones. If we assign equal probability  to every possible sequence, then the probability that an arbitrary sequence will be  induction­friendly is going to be significantly higher than the probability that it will be  induction­unfriendly. So a simple appeal to the principle of indifference seems to generate the  happy verdict that induction can be expected to be more reliable than not, at least in the case of  binary sequences.   Moreover, as White points out, the general strategy is not limited to binary sequences. If we  can show ​a priori that induction over a binary sequence is unlikely to be induction­unfriendly,  then it’s plausible that a similar kind of argument can be used to show that we are justified in  assuming that an arbitrary ​world is not induction­unfriendly. If true, this would serve to fully  vindicate induction.  2 Given Indifference, Induction Is not Reliable   However, there are grounds for pessimism about whether the strategy is successful even in the  simple case of binary sequences. Suppose that, as a special promotion, a casino decided to offer  Fair Roulette. The game involves betting $1 on a particular color – black or red – and then  spinning a wheel, which is entirely half red and half black. If wrong, you lose your dollar; if  right, you get your dollar back and gain another. If it were really true that induction can be  expected to be more reliable than not over binary sequences, it would seem to follow that  induction can serve as a winning strategy, over the long term, in Fair Roulette. After all, multiple  spins of the wheel produce a binary sequence of reds and blacks. And all possible sequences are  ­4­      equally probable. Of course, induction cannot be used to win at Fair Roulette – past occurrences  of red, for example, are not evidence that the next spin is more likely to be red. This suggests that  something is amiss. Indeed, it turns out that no inferential method – whether inductive or  otherwise – can possibly be expected to be reliable at predicting unseen bits of a binary  sequence, if the principle of indifference is assumed. This can be shown as follows.  Let ​S be an unknown binary sequence of length ​n. ​S is to be revealed one bit at a time,  starting with the first.   S: ​? ? ? ? ? ? … ?​ ​:​S    n bits  Let ​f be an arbitrary predictive function that takes as input any initial subsequence of ​S and  outputs a prediction for the next bit: ‘0’, ‘1’, or ‘suspend judgment’.   A  predictive  function’s  accuracy  is measured as follows: +1 for each correct prediction; ­1 for  each  incorrect  prediction;  0  each  time ‘suspend judgment’ occurs. (So the maximum accuracy of  a  function  is  ​n;  the  minimum  score  is  –​n.)  Given  a  probability  distribution  over  all  possible  sequences,  the  ​expected  accuracy  of  a  predictive  function  is  the  average  of  its  possible  scores  weighted by their respective probabilities.  Claim: ​If we assume indifference (i.e. if we assign equal probability to every possible sequence), then  – no matter what ​S is – each of​ f’s predictions​ will be expected to contribute 0 to ​f’s accuracy. And, as  a consequence of this, ​f has 0 expected accuracy more generally.  Proof: ​For some initial subsequences, ​f will output ‘suspend judgment’. The contribution of such  predictions will inevitably be 0. So we need consider only those cases where ​f makes a firm  prediction (i.e. ‘0’ or ‘1’; not ‘suspend judgment’).  Let ​K be a ​k­length initial subsequence for which ​f makes a firm prediction about the bit in   ­5­ 

https://www.pdf-archive.com/2017/02/19/canindifferencevindicateinduction/

19/02/2017 www.pdf-archive.com

FoolMeOnce 78%

-3- Viewed from this angle, it can seem reasonable to conclude that there are ​a priori grounds for confidence that an arbitrary sequence is not induction-unfriendly.

https://www.pdf-archive.com/2017/02/19/foolmeonce/

19/02/2017 www.pdf-archive.com

1306.0063v3 77%

In fact a form of space-time aether has been created, which is always at rest relative to any arbitrary chosen reference frame.

https://www.pdf-archive.com/2014/05/12/1306-0063v3/

12/05/2014 www.pdf-archive.com

FiledVerifiedPetition IDX 101880-2015 77%

Alternatively, enjoining and permanently restraining Defendants and any of their agents, officers and employees from implementing or enforcing § Title 23, Chapter I, Part 200 of the of the New York Codes, Rules and Regulations, as purportedly amended by DFS in June 2015, on the basis that it is unlawfully arbitrary and capricious;

https://www.pdf-archive.com/2015/10/17/filedverifiedpetition-idx-101880-2015/

17/10/2015 www.pdf-archive.com

Report on Human Rights violations on August 77%

At least 20 arbitrary murders by the state forces have been registered.

https://www.pdf-archive.com/2017/09/03/report-on-human-rights-violations-on-august/

03/09/2017 www.pdf-archive.com

ពាក្យបច្ចេកទេសគណិតវិទ្យា 76%

abregated - កត,់ សេងប ខ ់ ុស ី abscissa - អបស ់ ត absolute - ដចខ ់ ត absolute error - េលៀអ ងដចខ ី abstract - អរូបយ ិ របេស ម accidental - មន ំ accolades - រ៉ត, វណណយុត,តិ របង according to - តមរយៈ accurate - របកដ acute - រសួច ំ ូ ចជង៩០អងសរ acute angle - មុរំ សួច, មុត add - បែនម ថ add - បូក add - បូក ិ ប ី ូក addition - វធ ់ ន adjacent - ែដលជបគ ំ ប់ adjacent angle - មុជ admissable - អចយកបន admit - ទុកជរតូវ, យល់រពម ់ ុកជរតូវបន, បញូ ច ល admittance - ករចតទ aleatory - ៃចដនយ ិ គណិត algebra - ពជ ចមលងមកពី េសៀវេភ Francais-Khmer-Anglais de Mathematiques 1994 Page 1 អនកផតល ់ជំនយ ួ ៈ មងគល ពកយែខ មរខងែផនកគណិតសរសត អនកចមលងៈ ម៉ុន ម៉ន ិ គណិត, ពជ ិ គណិត algebraic - តមពជ ិ ព ី ជ ិ គណិត algebraic operation - របមនវធ ់ ន , រតជ ់ ួ រគន alligned - រតរ់ តងគ allowed - អនុញញតបន alternate - ែដលឆលសគន among - កុ ងច េំ ណម ន analogue - ដូច ិ ភព analogy - សទស ី analyse - ករវភគ ិ analysis - ករវភគ ិ ិ analytical - េដយវភគ, វភគ ិ វី ភគ ិ analytical method - វធ ិ analytical representation - ករតងែបបវភគ angle - មុ ំ angular - ជមុ,ំ មុ ំ angular minute - នទរី ងវស់មុ ំ  answer - ចេំ លយ  antecedent - ធតុេដម  , រពម ី ទ ី វី antiderivative - េដម ៉ ឡ ិ ូ ករត ី antilogarithme - អងទ any - សមញញ ិ ខួប aperiodic - គមនខួប, មន ិ ខួប aperiodicity - ភពគមនខួប, ភពមន ចមលងមកពី េសៀវេភ Francais-Khmer-Anglais de Mathematiques 1994 Page 2 អនកផតល ់ជំនយ ួ ៈ មងគល ពកយែខ មរខងែផនកគណិតសរសត អនកចមលងៈ ម៉ុន ម៉ន application - អនុវតន ត ៍ apply - អនុវតត ឹ ប ីត ទ apply a theorem - អនុវតរត ទស approach - របែហល  បនច ិត approach by above - របែហលេលស ិត approach by below - របែហលខះ វ បនច approximate equality - សមភពរបែហល approximation - កររបែហល approximative - របែហល arbitrary - ណមួយ, ខុសខនត ិ តួច arbitrary small - តូចណមួយ, ខុសខនតតច arc - ធូ ន ់ ូ េសកង់ arc consecant - អកក ់ ូ សុន ី ុស arc cosine - អកក ់ ់ ៉ ូ សតងសង arc cotangent - អកក arc of a circle - ធូ មណ ន ឌ ល ់ ុន ី ុស arc sine - អកស ់ ់ ់ ងសង arc tangent - អកត area - ៃផរទ កឡ ៉ argument - អរគុយមង arithmetical - នពវន,ត ែបបនពវនត ិ around - ជុវំ ញ arrange - តេំ រៀប ចមលងមកពី េសៀវេភ Francais-Khmer-Anglais de Mathematiques 1994 Page 3 អនកផតល ់ជំនយ ួ ៈ មងគល ពកយែខ មរខងែផនកគណិតសរសត អនកចមលងៈ ម៉ុន ម៉ន arrangement - តេំ រៀប arrow - រពួញ associated - ផុ គំ association - ករផុ គំ associative - ែដលផគំ ៈផុ គំ associative - ផុ ប ខ គំ ន, ែដលមនលកណ associativity - លកណ ៈផុ គំ ខ ិ ឆុ ះ asymmetrical - មន ល ិ សុេី មរទ,ី ភពមន ិ ឆុ ះ asymmetry - មន ល ំ ូត asymptote - អសត ំ ូត asymptotical - ៃនអសត ំ ូត asymptotical cone - េកនអសត ិ , យ៉ងេហចណស់ at least - យ៉ងតច  at most - យ៉ងេរចន ំ ួយ auxiliary - ជន ់ ន ំ ួយ ៉ ជ auxiliary argument - អរគុយមង average - មធយម axial - ែនអកស ័ ស axial symmetry - ភពឆុ ះតមអ ក ល axiom - ស័យ វ ស័តយ ័ ស axis - អក B.

https://www.pdf-archive.com/2013/02/13/unnamed-pdf-file/

13/02/2013 www.pdf-archive.com

httpsgclub24hr.com 76%

RTG RTG provided the exact very first arbitrary bonanza opening up - Cleopatra's Gold, and from that time frontward their Serious Line openings have become the absolute renowned places on the internet.

https://www.pdf-archive.com/2014/08/30/httpsgclub24hr-com/

30/08/2014 www.pdf-archive.com

NASA Lecture Notes 75%

Inasequenceofpublicatlonsbeginningin1965'R'E'Kalman |4,5,6Td.eveloped.analgebraictheoryfordiscrete-timesystemsofthe field K' form (1.1) defined over an arbitrary (finite or infinite) in addition to being applicable to systems over the real or systems over finite complex numbers, Kalmanrs theory can be applied to Hence, fields, which includes linear sequential circuits [7] ' L.2 Discrete-time systems over a ring of sealars' Afterthecompletionofhisworkondiscrete-timesystems over arbitrary fields, Kalman initiated the study of discrete-time sys_ rings.

https://www.pdf-archive.com/2013/07/07/nasa-lecture-notes/

07/07/2013 www.pdf-archive.com