Search


PDF Archive search engine
Last database update: 21 October at 09:56 - Around 76000 files indexed.


Show results per page

Results for «binary»:


Total: 200 results - 0.05 seconds

paper11 100%

Then, in Section III, we briefly describe the program analysis techniques we employ to derive abstract, graphical signatures of binaries, and in Section IV, we discuss how to compute distances between these signatures in order to determine the nearest neighbor of a given binary in the malware library, using an efficient technique that does not require computing its distance from every binary in that library.

https://www.pdf-archive.com/2015/10/22/paper11/

21/10/2015 www.pdf-archive.com

230-s15-h03-tvvu3 99%

Xor $s7, $a3, $t5 Find the code from the references Op code = 000000 Shamt = 000000 Xor = 100110 $s7 = 23 = 10111 $a3 = 7 = 00111 $t5 = 13 = 01101 Use the R-format to put the binary values in the correct location 000000 00111 01101 10111 000000 100110 Convert Binary To Hex.

https://www.pdf-archive.com/2015/04/17/230-s15-h03-tvvu3/

17/04/2015 www.pdf-archive.com

Evo Binary Plan-DE.compressed 99%

GESCHÄFTSPRÄSENTATION EVO BINARY Herzlich Willkommen Bitte schalten Sie Ihr Mobiltelefon aus, oder schalten Sie es stumm “Kleine Gelegenheiten sind oft der Anfang von großen Unternehmen” Demosthenes Eventuelle Fragen, können Sie am Ende der Präsentation stellen EVO BINARY GESCHÄFTSPRÄSENTATION 01 Verändern Wachsen Neu erfinden Wir leben in ständiger Veränderung und ständigem Wachstum in einer immer stärker wettbewerbsorientierten Welt.

https://www.pdf-archive.com/2016/10/09/evo-binary-plan-de-compressed/

09/10/2016 www.pdf-archive.com

INFINii-Official-PDF 98%

Hybrid Plan 1 2 Binary Uni-Level earn from both YOU Mark Susan YOU Susan Beth Mark Everyone you personally enrol and their teams comprise your Personal Enrolment Tree (PET) * Rank Caps apply Beth Ryan ----------------Ryan Unlimited Depth * Earn Infinitely deep from your Personal Enrolment Tree!

https://www.pdf-archive.com/2015/11/25/infinii-official-pdf/

25/11/2015 www.pdf-archive.com

Mat Final Equations adapted 97%

Strain Poisson's Ratio Ductility, Percent Elongation Ductility, Percent Reduction in Area Modulus of Resilience Modulus of Resilience True Stress True Strain No volume change during deformation This relations are valid until necking True stress/strain (plastic to necking) Safe (working) stress Notes Chapter 7 Usage Notes Burger's Vector Burger's Vector Burger's Vector Resolved Shear Stress Max Resolved Shear Stress (45°) Critical Resolved Shear Stress Minimum Stress for Yielding (45°) Dependence of Yield Strength on Grain Size Percent Cold Work Chapter 8 Usage Maximum stress at tip of Elliptical crack Stress Concentration Factor K_t Critical Stress - (Brittle) crack propagation Fracture Toughness Plane-Strain Fracture Toughness Design (or Critical) Stress Maximum allowable flaw size Mean Stress (fatigue tests) Range of Stress (fatigue tests) Stress Amplitude (fatigue tests) Stress Ratio (fatigue tests) Steady-State Creep Rate (T Const) Steady-State Creep Rate Larson-Miller parameter Notes Chapter 9 Usage Notes Mass fraction L-ph, binary isomorphous system Mass fraction α solid-sol, binary isomorphous systm Volume fraction of α phase α phase, conversion of mass to volume fraction α phase, conversion of volume to mass fraction Mass fraction of eutectic for binary eutectic system Mass fraction of primary α for binary eutectic system Mass fraction (total α phase) for binary eutectic Mass fraction of β phase for binary eutectic system Gibbs phase rule hypoeutectoid Fe-C alloy:

https://www.pdf-archive.com/2012/12/10/mat-final-equations-adapted/

10/12/2012 www.pdf-archive.com

FinalDraftBinaryBathroomsTomkovicz 96%

THE PROBLEM OF BINARY BATHROOMS 1 The Problem of Binary Bathrooms:

https://www.pdf-archive.com/2015/11/13/finaldraftbinarybathroomstomkovicz/

13/11/2015 www.pdf-archive.com

Snake 95%

This is called the binary number system and it’s what computers understand best.

https://www.pdf-archive.com/2017/08/11/snake/

11/08/2017 www.pdf-archive.com

HW4 95%

There are three 8-bit by 1-bit RAM chips connected to an address bus (a set of wires which contain the address in binary).

https://www.pdf-archive.com/2017/04/12/hw4/

12/04/2017 www.pdf-archive.com

CanIndifferenceVindicateInduction 94%

    Fool Me Once: Can Indifference Vindicate Induction?  Roger White (2015) sketches an ingenious new solution to the problem of induction. It argues on  a priori ​  grounds that the world is more likely to be induction­friendly than induction­unfriendly.  The argument relies primarily on the principle of indifference, and, somewhat surprisingly,  assumes little else. If inductive methods could be vindicated in anything like this way, it would  be quite a groundbreaking result. But there are grounds for pessimism about the envisaged  approach. This paper shows that in the crucial test cases White concentrates on, the principle of  indifference actually renders induction no more accurate than random guessing. It then diagnoses  why the indifference­based argument seems so intuitively compelling, despite being ultimately  unsound.  1 An Indifference­Based Strategy  White begins by imagining that we are “apprentice demons” tasked with devising an  induction­unfriendly world ​  – a world where inductive methods tend to be unreliable. To  simplify, we imagine that there is a single binary variable that we control (such as whether the  sun rises over a series of consecutive days). So, in essence, the task is to construct a binary  sequence such that – if the sequence were revealed one bit at a time – an inductive reasoner  would fare poorly at predicting its future bits. This task, it turns out, is surprisingly difficult. To  see this, it will be instructive to consider several possible strategies for constructing a sequence  that would frustrate an ideal inductive predictor.  Immediately, it is clear that we should avoid uniformly patterned sequences, such as:   00000000000000000000000000000000   or  01010101010101010101010101010101.  ­1­      Sequences like these are quite kind to induction. Our inductive reasoner would quickly latch onto  the obvious patterns these sequences exhibit. A more promising approach, it might seem, is to  build an apparently patternless sequence:  00101010011111000011100010010100  ​ But, importantly, while induction will not be particularly ​ ​ reliable at predicting the terms of this  sequence, it will not be particularly ​unreliable here either. Induction would simply be silent  about what a sequence like this contains. As White puts it, “ In order for... induction to be  applied, our data must contain a salient regularity of a reasonable length” (p. 285). When no  pattern whatsoever can be discerned, presumably, induction is silent. (We will assume that the  inductive predictor is permitted to suspend judgment whenever she wishes.) The original aim  was not to produce an induction­neutral sequence, but to produce a sequence that elicits errors  from induction. So an entirely patternless sequence will not suffice. Instead, the  induction­unfriendly sequence will have to be more devious, building up seeming patterns and  then violating them. As a first pass, we can try this:  00000000000000000000000000000001  Of course, this precise sequence is relatively friendly to induction. While our inductive predictor  will undoubtedly botch her prediction of the final bit, it is clear that she will be able to amass a  long string of successes prior to that point. So, on balance, the above sequence is quite kind to  induction – though not maximally so.   In order to render induction unreliable, we will need to elicit more errors than correct  predictions. We might try to achieve this as follows:  00001111000011110000111100001111  ­2­      The idea here is to offer up just enough of a pattern to warrant an inductive prediction, before  pulling the rug out – and then to repeat the same trick again and again. Of course, this precise  sequence would not necessarily be the way to render induction unreliable: For, even if we did  manage to elicit an error or two from our inductive predictor early on, it seems clear that she  would eventually catch on to the exceptionless higher­order pattern governing the behavior of  the sequence.  The upshot of these observations is not that constructing an induction­unfriendly sequence is  impossible. As White points out, constructing such a sequence should be possible, given any  complete description of how exactly induction works (p. 287). Nonetheless, even if there are a  few special sequences that can frustrate induction, it seems clear that such sequences are fairly  few and far between. In contrast, it is obviously very easy to ​corroborate induction (i.e. to  construct a sequence rendering it thoroughly reliable). So induction is relatively  un­frustrate­able. And it is worth noting that this property is fairly specific to induction. For  example, consider an inferential method based on the gambler’s fallacy, which advises one to  predict whichever outcome has occurred less often, overall. It would be quite easy to frustrate  this method thoroughly (e.g. ​00000000…​).   So far, we have identified a highly suggestive feature of induction. To put things roughly, it  can seem that:   * Over a large number of sequences, induction is thoroughly reliable.   * Over a large number of sequences, induction is silent (and hence, neither reliable nor unreliable).  * Over a very small number of sequences (i.e. those specifically designed to thwart induction),  induction is unreliable (though, even in these cases, induction is still silent much of the time).  ­3­      Viewed from this angle, it can seem reasonable to conclude that there are ​a priori grounds for  confidence that an arbitrary sequence is not induction­unfriendly. After all, there seem to be far  more induction­friendly sequences than induction­unfriendly ones. If we assign equal probability  to every possible sequence, then the probability that an arbitrary sequence will be  induction­friendly is going to be significantly higher than the probability that it will be  induction­unfriendly. So a simple appeal to the principle of indifference seems to generate the  happy verdict that induction can be expected to be more reliable than not, at least in the case of  binary sequences.   Moreover, as White points out, the general strategy is not limited to binary sequences. If we  can show ​a priori that induction over a binary sequence is unlikely to be induction­unfriendly,  then it’s plausible that a similar kind of argument can be used to show that we are justified in  assuming that an arbitrary ​world is not induction­unfriendly. If true, this would serve to fully  vindicate induction.  2 Given Indifference, Induction Is not Reliable   However, there are grounds for pessimism about whether the strategy is successful even in the  simple case of binary sequences. Suppose that, as a special promotion, a casino decided to offer  Fair Roulette. The game involves betting $1 on a particular color – black or red – and then  spinning a wheel, which is entirely half red and half black. If wrong, you lose your dollar; if  right, you get your dollar back and gain another. If it were really true that induction can be  expected to be more reliable than not over binary sequences, it would seem to follow that  induction can serve as a winning strategy, over the long term, in Fair Roulette. After all, multiple  spins of the wheel produce a binary sequence of reds and blacks. And all possible sequences are  ­4­      equally probable. Of course, induction cannot be used to win at Fair Roulette – past occurrences  of red, for example, are not evidence that the next spin is more likely to be red. This suggests that  something is amiss. Indeed, it turns out that no inferential method – whether inductive or  otherwise – can possibly be expected to be reliable at predicting unseen bits of a binary  sequence, if the principle of indifference is assumed. This can be shown as follows.  Let ​S be an unknown binary sequence of length ​n. ​S is to be revealed one bit at a time,  starting with the first.   S: ​? ? ? ? ? ? … ?​ ​:​S    n bits  Let ​f be an arbitrary predictive function that takes as input any initial subsequence of ​S and  outputs a prediction for the next bit: ‘0’, ‘1’, or ‘suspend judgment’.   A  predictive  function’s  accuracy  is measured as follows: +1 for each correct prediction; ­1 for  each  incorrect  prediction;  0  each  time ‘suspend judgment’ occurs. (So the maximum accuracy of  a  function  is  ​n;  the  minimum  score  is  –​n.)  Given  a  probability  distribution  over  all  possible  sequences,  the  ​expected  accuracy  of  a  predictive  function  is  the  average  of  its  possible  scores  weighted by their respective probabilities.  Claim: ​If we assume indifference (i.e. if we assign equal probability to every possible sequence), then  – no matter what ​S is – each of​ f’s predictions​ will be expected to contribute 0 to ​f’s accuracy. And, as  a consequence of this, ​f has 0 expected accuracy more generally.  Proof: ​For some initial subsequences, ​f will output ‘suspend judgment’. The contribution of such  predictions will inevitably be 0. So we need consider only those cases where ​f makes a firm  prediction (i.e. ‘0’ or ‘1’; not ‘suspend judgment’).  Let ​K be a ​k­length initial subsequence for which ​f makes a firm prediction about the bit in   ­5­ 

https://www.pdf-archive.com/2017/02/19/canindifferencevindicateinduction/

19/02/2017 www.pdf-archive.com

FoolMeOnce 94%

To simplify, we imagine that there is a single binary variable that we control (such as whether the sun rises over a series of consecutive days).

https://www.pdf-archive.com/2017/02/19/foolmeonce/

19/02/2017 www.pdf-archive.com

SIETAR EUROPA 2017 Keynote. Dublin. Mai Nguyen-Phuong-Mai 93%

The insight challenges our tradition of intercultural theories, inviting us to re-evaluate and refresh our understanding on many fronts, such as the purpose of culture, the binary system of values, the static paradigm, and the notion that individuals are products of culture.

https://www.pdf-archive.com/2017/06/06/sietar-europa-2017-keynote-dublin-mai-nguyen-phuong-mai/

06/06/2017 www.pdf-archive.com

Overview of Mathematics 92%

GENERAL RELATIVITY LORENTZ GROUP QUANTUM FIELD THEORY (Operator-valued fields on R 4obeying certain Lorentzinvariant PDE’s and commutation relationships, acting on an abstract Hilbert space) (3+1-dimensional pseudo-Riemannian manifolds with tensor fields obeying PDE’s of, say, Einstein-Maxwell theory with perfect fluid component) SU(2) Specialize LIE GROUPS LIE ALGEBRAS DIFFERENTIAL OPERATORS ALGEBRAS LINEAR OPERATORS Define linear vector mappings TRIPLE FIELDS Add 4th binary op.

https://www.pdf-archive.com/2016/01/07/overview-of-mathematics/

07/01/2016 www.pdf-archive.com

darpa 90%

The framework combines runtime analysis, physical memory reconstruction and dataflow tracing to collect low-level binary and contextual data, which provides the raw data to generate a universal set of rule-based trait and pattern libraries that describe malware genomes.

https://www.pdf-archive.com/2011/02/08/darpa/

08/02/2011 www.pdf-archive.com

it IT Marketing Guides 90%

• “Il Trading di Opzioni Binarie è Semplice.” - "Binary Options Trading is Simple"

https://www.pdf-archive.com/2017/05/26/it-it-marketing-guides/

26/05/2017 www.pdf-archive.com

OtmaneElrhaziOptions 90%

Asset-or-nothing call options are frequently written as (binary) barrier options.

https://www.pdf-archive.com/2014/05/18/otmaneelrhazioptions/

18/05/2014 www.pdf-archive.com

UNIT-1 QB 89%

Write an algorithm to find number of binary digits in the binary representation of a positive decimal integer?

https://www.pdf-archive.com/2017/04/02/unit-1-qb/

02/04/2017 www.pdf-archive.com

genetic algorithms paper 88%

After generating a test case, the binary sequence of its controls is saved to be compared with future sequences.

https://www.pdf-archive.com/2011/09/08/genetic-algorithms-paper/

08/09/2011 www.pdf-archive.com

Maths (Summer 2010).PDF 87%

(i) 143.78125 to binary (ii) 10287.46875 to octal (iii) 43193 to hexadecimal (8 marks) (c) (i) Set up the binary octal conversion table and convert the decimal number 979 to binary via octal (ii) Set up the binary hexadecimal conversion table and convert the following binary numbers to hexadecimal:

https://www.pdf-archive.com/2014/05/01/maths-summer-2010/

30/04/2014 www.pdf-archive.com

HudsonHughesSANA 87%

The objective of this paper is to demonstrate the effectiveness of a new method that is quickly and reliably able to provide productive schedules using binary search and linear regression.

https://www.pdf-archive.com/2017/10/18/hudsonhughessana/

18/10/2017 www.pdf-archive.com

Ingefirapport (3) 85%

2.5 Binary Barrier Options .

https://www.pdf-archive.com/2017/01/19/ingefirapport-3/

19/01/2017 www.pdf-archive.com

Process Wars 84%

Binary trees (code should be in binary_tree.c and binary_tree.h) [10 points] For this part, you will need to implement balanced binary trees.

https://www.pdf-archive.com/2017/12/01/process-wars/

01/12/2017 www.pdf-archive.com

CV 84%

2016 • Helped students understand concepts such as binary/floating point numbers, binary operations, and assembly programming.

https://www.pdf-archive.com/2018/01/20/cv/

20/01/2018 www.pdf-archive.com

en US Marketing Guides 83%

Binary Options Trading is Simple • Learn how simple Binary Options are • Try for free!

https://www.pdf-archive.com/2017/05/26/en-us-marketing-guides/

26/05/2017 www.pdf-archive.com