PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact


Search


PDF Archive search engine
Last database update: 31 November at 22:19 - Around 210000 files indexed.

Show results per page

Results for «chromosome»:


Total: 100 results - 0.086 seconds

LIfe Science Summarised Guide Notes 100%

Metaphase 1 Whole chromosomes are pulled to opposite poles in Anaphase 1 Chromosome number is halved during meiosis I Results in two cells Meiosis II Chromosomes single stranded No crossing-over Chromosomes in individuals at equator:

https://www.pdf-archive.com/2016/02/20/life-science-summarised-guide-notes/

20/02/2016 www.pdf-archive.com

Genetic architecture 99%

Genes The Pre-organic or Master Chromosome Fig.

https://www.pdf-archive.com/2016/10/14/genetic-architecture/

14/10/2016 www.pdf-archive.com

Solving the Energy Efficient Coverage Problem in Wireless Sensor Networks - A Distributed Genetic Algorithm Approach with Hierarchical Fitness Evaluation 97%

Secondly, when we evaluate a chromosome, different from the traditional model of EEC problem in WSN that only calculates the number of disjoint sets, we proposed a hierarchical fitness evaluation and constructed a two-level fitness function to count the number of disjoint sets and the coverage performance of all the disjoint sets.

https://www.pdf-archive.com/2018/12/22/untitled-pdf-document-38/

22/12/2018 www.pdf-archive.com

larmuseau2013 Copy 96%

Many Y-chromosomal lineages which are defined in the latest phylogenetic tree of the human Y chromosome by the Y Chromosome Consortium (YCC) in 2008 are distributed in (Western) Europe due to the fact that a large number of phylogeographic studies focus on this area.

https://www.pdf-archive.com/2017/05/13/larmuseau2013-copy/

13/05/2017 www.pdf-archive.com

lec4 95%

Eukaryote Genetics Prokaryotes are haploid, and they contain a single circular chromosome.

https://www.pdf-archive.com/2016/11/16/lec4/

16/11/2016 www.pdf-archive.com

Genome Res.-2015-Karmin-gr.186684.114 95%

Downloaded from genome.cshlp.org on March 16, 2015 - Published by Cold Spring Harbor Laboratory Press Research A recent bottleneck of Y chromosome diversity coincides with a global change in culture Monika Karmin,1,2,67 Lauri Saag,1,3,67 Mário Vicente,4,67 Melissa A.

https://www.pdf-archive.com/2015/05/03/genome-res-2015-karmin-gr-186684-114/

03/05/2015 www.pdf-archive.com

Appendix2 95%

Description Max score Total score Query cover E value Ident Accession Nitrobacter hamburgensis X14, complete genome 241 440 94% 5e­60 89% CP000319.1 Pannonibacter phragmitetus strain 31801, complete genome 178 316 94% 5e­41 80% CP013068.1 Ochrobactrum anthropi strain OAB chromosome 2, complete sequence 167 167 94% 8e­38 79% CP008819.1 Ochrobactrum anthropi ATCC 49188 chromosome 2, complete sequence 167 167 94% 8e­38 79% CP000759.1 Brevundimonas sp. DS20, complete genome 163 409 95% 1e­36 84% CP012897.1 Rhizobium etli bv. mimosae str. Mim1 plasmid pRetMIM1f, complete sequence 163 163 94% 1e­36 79% CP005956.1 Rhizobium etli CFN 42 plasmid p42f, complete sequence 163 163 94% 1e­36 79% CP000138.1 Aureimonas sp. AU22 DNA, ribosomal RNA operon, note: contig containing rrnC 161 161 94% 4e­36 78% LC066387.1 Oligotropha carboxidovorans OM5 plasmid pHCG3, complete sequence 161 161 94% 4e­36 79% CP002827.1 Oligotropha carboxidovorans OM4 plasmid pHCG3B, complete sequence 161 161 94% 4e­36 79% CP002822.1 Sphingobium japonicum UT26S DNA, chromosome 1, complete genome 159 159 94% 1e­35 78% AP010803.1 Sphingobium baderi strain DE­13, complete genome 156 199 90% 2e­34 79% CP013264.1 Mesorhizobium australicum WSM2073, complete genome 156 156 92% 2e­34 79% CP003358.1 Sinorhizobium fredii HH103 main chromosome, complete sequence 156 156 92% 2e­34 79% HE616890.1 Xanthobacter autotrophicus Py2, complete genome 152 152 94% 2e­33 77% CP000781.1 Sinorhizobium meliloti GR4 plasmid pRmeGR4c, complete sequence 149 190 87% 2e­32 79% CP003936.2 Sinorhizobium meliloti strain RMO17 plasmid pSymA, complete sequence 149 193 87% 2e­32 79% CP009145.1 Sinorhizobium meliloti 2011 plasmid pSymA, complete sequence 149 193 87% 2e­32 79% CP004138.1 Sinorhizobium fredii USDA 257 plasmid pUSDA257 fragment 1, complete sequence 149 149 90% 2e­32 78% CP003564.1 Sinorhizobium fredii HH103 plasmid pSfHH103d partial sequence, fragment 3 149 149 90% 2e­32 78% HE616896.1 Sinorhizobium meliloti SM11 plasmid pSmeSM11c, complete sequence 149 193 87% 2e­32 79% CP001831.1 Sinorhizobium meliloti BL225C plasmid pSINMEB01, complete sequence 149 193 87% 2e­32 79% CP002741.1 Sinorhizobium meliloti 1021 plasmid pSymA, complete sequence 149 193 87% 2e­32 79% AE006469.1 Rhizobium etli bv. phaseoli str. IE4803 plasmid pRetIE4803d, complete sequence 145 145 94% 3e­31 77% CP007645.1 Sinorhizobium meliloti Rm41 plasmid pSYMA complete sequence 145 190 87% 3e­31 78% HE995407.1 Rhizobium leguminosarum bv. trifolii http://blast.ncbi.nlm.nih.gov/Blast.cgi 2/8 2/12/2016 NCBI Blast:HMF1AA_dt74b_5 sequences (IYWV7OX01CEBZW) WSM2304 plasmid pRLG201, complete sequence 145 145 86% 3e­31 79% CP001192.1 Chelativorans sp. BNC1, complete genome 141 141 94% 3e­30 76% CP000390.1 Rhizobium sp. IRBG74 plasmid IRBL74_p, complete sequence 140 267 94% 1e­29 77% HG518324.1 Ensifer adhaerens OV14 plasmid pOV14c, complete sequence 138 138 83% 4e­29 78% CP007238.1 Martelella endophytica strain YC6887, complete genome 136 136 94% 1e­28 76% CP010803.1 Sinorhizobium meliloti AK83 chromosome 3, complete sequence 136 225 87% 1e­28 77% CP002783.1 Rhizobium sp. LPU83 plasmid pLPU83c, complete sequence 134 134 94% 5e­28 75% HG916854.1 Rhizobium etli CIAT 652, complete genome 131 131 94% 6e­27 76% CP001074.1 Uncultured bacterium clone contig01379 genomic sequence 125 125 94% 3e­25 74% KP422684.1 Agrobacterium tumefaciens str. C58 plasmid At, complete sequence 125 125 94% 3e­25 76% AE007872.2 Rhizobium etli bv. mimosae str. Mim1 plasmid pRetNIM1c, complete sequence 123 123 89% 9e­25 75% CP005953.1 Sphingopyxis macrogoltabida strain 203, complete genome 122 122 94% 3e­24 75% CP009429.1 Sinorhizobium fredii strain USDA257 type III effector NopBT (nopBT) gene, complete cds 122 122 66% 3e­24 80% JX135415.1 Rhizobium leguminosarum bv. viciae chromosome complete genome, strain 3841 122 163 90% 3e­24 75% AM236080.1 Beijerinckia indica subsp. indica ATCC 9039, complete genome 120 120 74% 1e­23 77% CP001016.1 Sphingomonas sanxanigenens NX02, complete genome 116 116 94% 1e­22 74% CP006644.1 Gluconacetobacter diazotrophicus PAl 5 complete genome 116 218 93% 1e­22 74% AM889285.1 Acidiphilium cryptum JF­5 plasmid pACRY02, complete sequence 116 116 72% 1e­22 78% CP000690.1 Rhizobium leguminosarum bv. trifolii CB782 plasmid, complete sequence 114 114 91% 5e­22 74% CP007068.1 Agrobacterium radiobacter K84 plasmid pAtK84b, complete sequence 114 114 94% 5e­22 74% CP000630.1 Caulobacter sp. K31 plasmid pCAUL01, complete sequence 114 114 41% 5e­22 90% CP000928.1 Sphingopyxis fribergensis strain Kp5.2 plasmid pSfKp5.2, complete sequence 113 113 93% 2e­21 74% CP009123.1 Sphingomonas taxi strain ATCC 55669, complete genome 113 113 97% 2e­21 73% CP009571.1 Gluconacetobacter xylinus E25, complete genome 111 211 93% 6e­21 72% CP004360.1 Rhizobium gallicum bv. gallicum R602 plasmid pRgalR602c, complete sequence 109 109 85% 2e­20 74% CP006880.1 Rhizobium leguminosarum bv. viciae plasmid pRL10 complete genome, strain 3841 109 109 90% 2e­20 73% AM236084.1 Asticcacaulis excentricus CB 48 chromosome 2, complete sequence 107 107 93% 7e­20 74% CP002396.1 Agrobacterium tumefaciens strain Ach5 plasmid pAt, complete sequence 105 105 97% 2e­19 73% CP011248.1 Sphingomonas sp. WHSC­8, complete genome 105 105 83% 2e­19 74% CP010836.1 http://blast.ncbi.nlm.nih.gov/Blast.cgi 3/8 2/12/2016 NCBI Blast:HMF1AA_dt74b_5 sequences (IYWV7OX01CEBZW) Agrobacterium tumefaciens LBA4213 (Ach5) plasmid pAt, complete sequence 105 105 97% 2e­19 73% CP007227.1 Rhizobium etli bv. phaseoli str. IE4803, complete genome 104 175 85% 8e­19 74% CP007641.1 Agrobacterium tumefaciens strain F64/95 plasmid pAoF64/95, complete sequence 104 104 94% 8e­19 73% JX683454.1 Rhizobium leguminosarum bv. trifolii WSM1325 plasmid pR132503, complete sequence 104 104 94% 8e­19 72% CP001625.1 Agrobacterium vitis S4 chromosome 1, complete sequence 104 104 90% 8e­19 73% CP000633.1 Agrobacterium tumefaciens str. C58 plasmid Ti, complete sequence 100 100 94% 1e­17 72% AE007871.2 Gluconacetobacter xylinus E25 plasmid pGX5, complete sequence 98.7 98.7 93% 4e­17 72% CP004365.1 Agrobacterium tumefaciens strain Ach5 chromosome linear, complete sequence 95.1 95.1 94% 4e­16 71% CP011247.1 Agrobacterium tumefaciens LBA4213 (Ach5) linear chromosome 95.1 95.1 94% 4e­16 71% CP007226.1 Agrobacterium sp. H13­3 linear chromosome, complete sequence 95.1 95.1 94% 4e­16 71% CP002249.1 Agrobacterium tumefaciens str. C58 linear chromosome, complete sequence 95.1 95.1 94% 4e­16 71% AE007870.2 Sinorhizobium meliloti strain SM11 plasmid pSmeSM11b, complete sequence 95.1 95.1 94% 4e­16 72% EF066650.1 Croceicoccus naphthovorans strain PQ­2, complete genome 91.5 91.5 94% 5e­15 71% CP011770.1 Rhizobium etli bv. mimosae str. IE4771 plasmid pRetIE4771a, complete sequence 91.5 91.5 94% 5e­15 71% CP006987.1 Sphingomonas sp. MM­1, complete genome 91.5 163 94% 5e­15 71% CP004036.1 Gluconacetobacter xylinus NBRC 3288 plasmid pGXY010 DNA, complete sequence 91.5 91.5 90% 5e­15 71% AP012160.1 Sphingopyxis fribergensis strain Kp5.2, complete genome 89.7 200 85% 2e­14 75% CP009122.1 Gluconobacter oxydans H24, complete genome 86.0 172 92% 2e­13 70% CP003926.1 Rhizobium leguminosarum bv. trifolii WSM1689, complete genome 82.4 82.4 94% 3e­12 71% CP007045.1 Rhizobium leguminosarum bv. viciae plasmid pRL8 complete genome, strain 3841 82.4 82.4 94% 3e­12 71% AM236082.1 Sphingobium sp. SYK­6 DNA, complete genome 80.6 80.6 85% 1e­11 71% AP012222.1 Phenylobacterium zucineum HLK1, complete genome 64.4 116 55% 7e­07 83% CP000747.1 Caulobacter segnis ATCC 21756, complete genome 62.6 62.6 28% 3e­06 84% CP002008.1 Caulobacter henricii strain CB4, complete genome 60.8 60.8 38% 9e­06 78% CP013002.1 Sphingopyxis sp. 113P3, complete genome 57.2 57.2 35% 1e­04 77% CP009452.1 Methylobacterium extorquens DM4 str.

https://www.pdf-archive.com/2016/02/12/appendix2/

12/02/2016 www.pdf-archive.com

Poznik et al. 2016 93%

Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences G David Poznik1,2,25, Yali Xue3,25, Fernando L Mendez2, Thomas F Willems4,5, Andrea Massaia3, Melissa A Wilson Sayres6,7, Qasim Ayub3, Shane A McCarthy3, Apurva Narechania8, Seva Kashin9, Yuan Chen3, Ruby Banerjee3, Juan L Rodriguez-Flores10, Maria Cerezo3, Haojing Shao11, Melissa Gymrek5,12, Ankit Malhotra13, Sandra Louzada3, Rob Desalle8, Graham R S Ritchie3,14, Eliza Cerveira13, Tomas W Fitzgerald3, Erik Garrison3, Anthony Marcketta15, David Mittelman16,17, Mallory Romanovitch13, Chengsheng Zhang13, Xiangqun Zheng-Bradley14, Gonçalo R Abecasis18, Steven A McCarroll19, Paul Flicek14, Peter A Underhill2, Lachlan Coin11, Daniel R Zerbino14, Fengtang Yang3, Charles Lee13,20, Laura Clarke14, Adam Auton15, Yaniv Erlich5,21,22, Robert E Handsaker9,19, The 1000 Genomes Project Consortium23, Carlos D Bustamante2,24 &

https://www.pdf-archive.com/2016/04/26/poznik-et-al-2016/

26/04/2016 www.pdf-archive.com

15 Meiosis 93%

Sexual Reproduction and Meiosis Chromosome Number Organisms have a set number of chromosomes specific to that species Each body cell has a complete set of those chromosomes Diploid number Number of chromosomes in body cells of sexually reproducing organisms 2n =___ 2n = 46 2n = 48 2n = 1400 Haploid number  Number of chromosomes in sex cells, gametes, of sexually reproducing organisms ½ the diploid number of chromosomes n=__ Human egg:

https://www.pdf-archive.com/2011/09/13/15-meiosis/

13/09/2011 www.pdf-archive.com

19I14-IJAET0514318 v6 iss2 730to736 92%

Crossover involves splitting two chromosomes and then combining first part of a chromosome with the second part of the other chromosome.

https://www.pdf-archive.com/2013/05/13/19i14-ijaet0514318-v6-iss2-730to736/

13/05/2013 www.pdf-archive.com

Genetic Algorithms 89%

It is important to note that the exact location of these alterations within the chromosome is totally random.

https://www.pdf-archive.com/2020/04/20/genetic-algorithms/

20/04/2020 www.pdf-archive.com

21I15-IJAET0715613 v6 iss3 1205to1210 89%

Chromosome, Genetic Algorithm (GA), Mutation, Optimization, Path Planning.

https://www.pdf-archive.com/2014/07/04/21i15-ijaet0715613-v6-iss3-1205to1210/

04/07/2014 www.pdf-archive.com

IJETR2192 89%

By one from two parent point crossover method, for a chromosome of length, l, a random number c between 1 and l is first generated.

https://www.pdf-archive.com/2017/09/09/ijetr2192/

09/09/2017 www.pdf-archive.com

Larmuseau2011Copy 89%

Received 25 June 2010 Received in revised form 12 August 2010 Accepted 25 August 2010 One of the future issues in the forensic application of the haploid Y-chromosome (Y-chr) is surveying the distribution of the Y-chr variation on a micro-geographical scale.

https://www.pdf-archive.com/2017/05/13/larmuseau2011copy/

13/05/2017 www.pdf-archive.com

5090 w11 qp 22 88%

2.1 (a) Name the chemical contained within a chromosome that is responsible for inheritance.

https://www.pdf-archive.com/2016/06/09/5090-w11-qp-22/

09/06/2016 www.pdf-archive.com

Are-men-aware-of-their-condition-«-Cherryblossomlife-1 87%

Let’s look at the Y chromosome, because this is where the answer lies.

https://www.pdf-archive.com/2015/02/24/are-men-aware-of-their-condition-cherryblossomlife-1/

24/02/2015 www.pdf-archive.com

genetic algorithms paper 87%

The algorithm begins with a random process for selecting the chromosome (i.e.

https://www.pdf-archive.com/2011/09/08/genetic-algorithms-paper/

08/09/2011 www.pdf-archive.com

Bio Gk Gerold Stufe 11 Klausur 1 86%

Chromosome durch Schraubung und Faltung verkürzt • jedes Chromosom ist in zwei identische Hälften (Chromatide) gespalten • Chromatide werden vom Centromer zusammengehalten • zwischen den Polen der Zelle entstehen Kernteilungsspindeln • Kernmembran und Nucleolus lösen sich auf Metaphase:

https://www.pdf-archive.com/2011/11/22/bio-gk-gerold-stufe-11-klausur-1/

22/11/2011 www.pdf-archive.com

emboj2009195a 85%

To surmount this problem, nearly all eukaryotes use the telomerase enzyme, a specialized reverse transcriptase that utilizes its own RNA template to add short TG-rich repeats to chromosome ends, thus reversing their gradual erosion occurring at each round of replication.

https://www.pdf-archive.com/2014/10/22/emboj2009195a/

22/10/2014 www.pdf-archive.com

GENETIC AND BEHAVIOUR MODIFIED 85%

Another example is leukocyte which some of its properties coded by the genes located in a part of the chromosome no 6.

https://www.pdf-archive.com/2016/12/29/genetic-and-behaviour-modified/

29/12/2016 www.pdf-archive.com

The Redhead 85%

Fair hair occurs in people with two copies of a recessive gene on chromosome 16 which causes a mutation on the MC1R protein.

https://www.pdf-archive.com/2015/07/05/the-redhead/

05/07/2015 www.pdf-archive.com

rabbittstaug144 85%

We will continue to develop strategies for emulating chromosome translocations as initiating events and tagging the cells which acquire these changes in mouse models to enable them to be isolated and studied during progression from the initiating event through to overt disease.

https://www.pdf-archive.com/2018/02/15/rabbittstaug144/

15/02/2018 www.pdf-archive.com

L00498 Vladimirov & Petrova 2009 84%

Tetraploid chromosome number, 2n = 4x = 40, was established from the Bulgarian accession confirming earlier counts from elsewhere in Europe.

https://www.pdf-archive.com/2015/09/24/l00498-vladimirov-petrova-2009/

24/09/2015 www.pdf-archive.com

Copy tag