PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact


Search


PDF Archive search engine
Last database update: 13 August at 13:50 - Around 220000 files indexed.

Show results per page

Results for «compression»:


Total: 1000 results - 0.05 seconds

Compression Therapy Market 99%

Compression Therapy Market:

https://www.pdf-archive.com/2018/05/03/compression-therapy-market/

03/05/2018 www.pdf-archive.com

IJEAS0404038 99%

2394-3661, Volume-4, Issue-4, April 2017 JPEG Based Compression Algorithm Mazen Abuzaher, Jamil Al-Azzeh  Abstract— Lossy image compression algorithms provide us with very small image size with a slight loss of image quality due to compression.

https://www.pdf-archive.com/2017/09/10/ijeas0404038/

10/09/2017 www.pdf-archive.com

7-zip Compression Settings Guide 98%

7-zip Compression Settings Guide Digital Studio 7 This guide is created to help 7-zip users understand what settings do what and how to achieve best compression on their systems, for this guide I am using 7-zip gui however I believe reading this guide will help you with commend line version as well.

https://www.pdf-archive.com/2014/03/30/7-zip-compression-settings-guide/

30/03/2014 www.pdf-archive.com

IJETR2178 98%

2321-0869 (O) 2454-4698 (P), Volume-7, Issue-5, May 2017 Improvement of Classical Wavelet Network over ANN in Image Compression Gaurav Bajpai, Mr.

https://www.pdf-archive.com/2017/09/09/ijetr2178/

09/09/2017 www.pdf-archive.com

11pages 98%

Lossless Compression of Grayscale Medical Images - Effectiveness of Traditional and State of the Art Approaches David A.

https://www.pdf-archive.com/2017/03/09/11pages/

09/03/2017 www.pdf-archive.com

the science behind compression gear1821 97%

the science behind compression gear Professional, and even amateur, athletes are always looking for an edge to help them improve their performance and reduce recovery time.

https://www.pdf-archive.com/2015/03/20/the-science-behind-compression-gear1821/

20/03/2015 www.pdf-archive.com

9N13-IJAET0313548 revised 96%

2231-1963 EFFICIENT IMAGE COMPRESSION TECHNIQUE USING FULL, COLUMN AND ROW TRANSFORMS ON COLOUR IMAGE H.

https://www.pdf-archive.com/2013/05/13/9n13-ijaet0313548-revised/

13/05/2013 www.pdf-archive.com

2I15-IJAET0715522 v6 iss3 1055to1062 95%

22311963 THE JPEG IMAGE COMPRESSION ALGORITHM Muzhir Shaban AL-Ani, Fouad Hammadi Awad College of Computer, Anbar University, Anbar, Iraq ABSTRACT The basis for the JPEG algorithm is the Discrete Cosine Transform (DCT) which extracts spatial frequency information from the spatial amplitude samples.

https://www.pdf-archive.com/2014/07/04/2i15-ijaet0715522-v6-iss3-1055to1062/

04/07/2014 www.pdf-archive.com

Anti Fatigue Compression Socks 94%

Buy Anti Fatigue Compression Socks @ Beyondlady.com Today women are more cognizant of the benefits of using compression socks and are keen about using these for their immense benefits.

https://www.pdf-archive.com/2018/02/14/anti-fatigue-compression-socks/

14/02/2018 www.pdf-archive.com

Using Compression Sleeves to boost Sports Performance 93%

Using Compression Sleeves to boost Sports Performance Over the past couple of years compression sleeves have gained notoriety from the sports world.

https://www.pdf-archive.com/2017/06/28/using-compression-sleeves-to-boost-sports-performance/

28/06/2017 www.pdf-archive.com

Formulas for steel structure 93%

Short Notes on Design of Steel Structures    Tension Member    A  tension  member  in  which  reversal  of  direct  stress  due  to  loads  other  then  wind  or  earthquake forces has maximum slenderness ratio =180  A member normally acting as a tie in roof truss or bracing system. But subjected to possible  reversal  of  stress  resulting  from  the  action  of  wind  or  earthquake  forces  has  maximum  slenderness ratio =350    Net Sectional Area    s12 s22   For plate: Net area = (b x t) – nd't     t     4 g1 4 g 2   Single angle connected by one leg only.    o Anet  A1  kA2      where, A1 = Net cross‐section of area of the connected leg.  A2 = Gross cross‐sectional area of unconnected leg. (out stand)  3 A1 o k      3 A1  A2 t  o   A1   t1   t   2  t  o A2   t2   t   2  o                      Anet  ( I1  I 2  t )t     For pair of angle placed back to back (or a signal tee) connected by only one leg of each angle  (or by the flange of a tee) to the same side of a gusset plate: or it the two angles are tagged  along a‐a.        Anet  A1  kA2   o 5 A1 k 5 A1  A2    o   where, A1 = Area of connected leg  A2 = Area of outstand (unconnected leg)   If two angles are places back to back and connected to both sides of the gusset plate. Then  o   Anet  A1  A2 (k  1)  when tack riveted.  If not tack riveted then both will be considered separately and case (ii) will be followed  k  3 A1   3 A1  A2   Permissible Stress in Design     The direct stress in axial tension on the effective net area should not exceeded σat  where       σat = 0.5fy    fy = minimum yield stress of steel in MPa    Lug Angle   The lug angle is a short length of an angle section used at a joint to connect the outstanding  leg of a member, thereby reducing the length of the joint. When lug angle is used k = 1    Compression Member    Strength of an Axially Loaded Compression Member   The maximum axial compressive load P  P = σac x A  where,  o o o o P = axial compressive load (n)  σac = permissible stress in axial compression (MPa)  A = gross‐sectional area of the member (mm2)  σac is given as   ac  0.6  o f cc  f y [ f ccn  f yn ]1/ n fcc = elastic critical stress in compression     2E   2 o    = slenderness ratio =  I    r   Maximum Slenderness Ratio        A member carrying compressive loads resulting from dead load and superimposed loads has  maximum slenderness ratio = 180  A member subjected to compressive loads resulting from wind/earthquake forces provided  the deformation of such members does not adversely affect the stress in any part of the  structure= 250  A member normally carrying tension but subjected to reversal of stress due to wind or  earthquake forces=350      Sl. No.  Degree  of  end  restraint  of  Recommended  value  of  Symbol  compression member  effective Length  1.  Effectively  held  in  position  and  0.65 L  restrained  against  rotation  at  both ends    2.  Effectively  held  in  position  at  0.80 L  both  ends  restrained  against  rotation at one end    3.  Effectively  held  in  position  at  1.00 L  both  ends,  but  not  restrained  against rotation     4.  5.    Effectively  held  in  position  and  1.20 L  restrained  against  rotation  at  one  end,  and  at  the  other  end  restrained  against  rotation  but  not held in position.  Effectively  held  in  position  and  1.50 L  restrained  against  rotation  at  one  end,  and  at  the  other  end  partially  restrained  against  rotation       6.  Effectively  held  in  position  at  2.00 L  one  end  but  not  restrained  against  rotation,  and  at  the  other  end  restrained  against  rotation but not held in position 7.    Effectively  held  in  position  and  2.00 L  restrained  against  rotation  at  one end but not held in position  nor  restrained  against  rotation  at the other end        Built‐up Compression Member  Tacking Rivets    The slenderness ratio of each member between the connections should not be greater than  40 nor greater than 0.6 times the most unfavorable slenderness ratio of the whole strut  The diameter of the connecting rivets should not be less than the minimum diameter given  below.    Thickness of member  Minimum diameter of rivets  UP to 10 mm  16 mm  Over 10 mm to 16 mm  20 mm  Over 10 mm  22 mm       Lacings    Type of lacing  Effective length Ie  Single lacing, riveted at ends  Length between inner and rivets on lacing bar (= I,  as shown in Fig. 17)  Double lacing, riveted at ends and  0.7  times  length  between  inner  end  rivets  on  at intersection  lacing bars (= 0.7 x I)  Welded lacing  0.7 times distance between inner ends of effective  lengths of welds at ends (0.7 xI)    For local Buckling criteria  L  50 c rmin  0.7whole sec tion   Where,    L = distance between the centres of connections of the lattice bars to each component   c  rmin = minimum radius of gyration of the components of compression member     For a single lacing system on two parallel faces, the force (compressive or tensile) in each bar,  F  For double lacing system on two parallel planes, the force (compressive or tensile) in each bar,  F     V    2sin  V   4sin  If the flat lacing bars of width b and thickness t have rivets of diameter d then,  force F    ac    gross area b  t force F    at   Tensile stress in each bar  net area (b  d )  t 2Fcos Numbers of rivets required     Rivet value Compressive stress in each bar     Welded connections    Lap joint: Overlap   (14)  times thickness of bar or member, whichever is less.  Butt joints: Full penetration butt weld of fillet weld on each side. Lacing bar should be placed  opposite to flange or stiffening member of main member.     Slab Base   Area of slab base= axial load in the column   permissible compressive stress in concrete  The thickness of a rectangular slab base as per   t 3w  2   b2  a      bs  4    The thickness of a square slab base plate under a solid round column.  t  10   90W B    16 bs ( B  d0 )     Structural Fasteners   Riveting     Gross dia of rivet or dia of hole d' = d + 1.5 mm     for d ≤ 25 mm  d' = d + 2.0 mm    for d ≤ 25 mm  where     d = Nominal dia of rivet  d' = Gross dia of rivet or dia of hole…  Unwins formula 

https://www.pdf-archive.com/2018/03/10/formulas-for-steel-structure/

10/03/2018 www.pdf-archive.com

IJEAS0403013 93%

International Journal of Engineering and Applied Sciences (IJEAS) ISSN:

https://www.pdf-archive.com/2017/09/10/ijeas0403013/

10/09/2017 www.pdf-archive.com

VPMetall 93%

The pressure is applied instantaneously (1/10 000 sec.) and the compression of the sleeve and cable is performed with a high degree of accuracy.

https://www.pdf-archive.com/2015/04/24/vpmetall/

24/04/2015 www.pdf-archive.com

14I15-IJAET0715589 v6 iss3 1154to1159 93%

Compression and split tensile tests on cement mortar cubes of size 70.6 x 70.6 x 70.6 mm containing fibre of 0.0, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0 % by weight were carried out.

https://www.pdf-archive.com/2014/07/04/14i15-ijaet0715589-v6-iss3-1154to1159/

04/07/2014 www.pdf-archive.com

How the Compression load sensor working 93%

How the Compression load sensor working From the manufacturing and industrial market, you can able to find various types of compression load cell.

https://www.pdf-archive.com/2016/08/18/how-the-compression-load-sensor-working/

18/08/2016 www.pdf-archive.com

27I14-IJAET0514228 v6 iss2 795to803 92%

International Journal of Advances in Engineering &

https://www.pdf-archive.com/2013/05/13/27i14-ijaet0514228-v6-iss2-795to803/

13/05/2013 www.pdf-archive.com

LuminoTransactionCompressionProtocolLTCP 92%

Lumino Transaction Compression Protocol (LTCP) 1 of 10 Lumino Transaction Compression Protocol (LTCP) Sergio Demian Lerner, Chief Scientist RSK Labs Date:

https://www.pdf-archive.com/2017/03/01/luminotransactioncompressionprotocolltcp/

01/03/2017 www.pdf-archive.com

51I18-IJAET0118651 v6 iss6 2758-2765 91%

International Journal of Advances in Engineering &

https://www.pdf-archive.com/2014/07/04/51i18-ijaet0118651-v6-iss6-2758-2765/

04/07/2014 www.pdf-archive.com

GTmetrix-report-samagames.net-20140823T034029-TXFQJOlh-full 91%

Minifying http://samagames.net/wp-content/themes/arcade-basic/style.css?ver=3.9.2 could save 2.3KiB (11% reduction) after compression.

https://www.pdf-archive.com/2014/08/23/gtmetrix-report-samagames-net-20140823t034029-txfqjolh-full/

23/08/2014 www.pdf-archive.com

How Does a Metal Baler Work 91%

The piston rod reaches out, pressing the articulated door cover into the press box and closing it to form the compression chamber.

https://www.pdf-archive.com/2015/07/16/how-does-a-metal-baler-work/

16/07/2015 www.pdf-archive.com