PDF Archive search engine
Last database update: 17 November at 11:24 - Around 76000 files indexed.

Show results per page

Results for «coolant»:

Total: 70 results - 0.026 seconds

Ford Coolant chart 100%

Service Coolant Usage Chart Model Year(s) Vehicle Pre-1999 1999-2001 2002 2003 2004-2008 2009 2010 2011 2012 Y Y Y Y N/A Y Y Y Y Y Y Ford G GY Econoline (E-Series) G GY Edge N/A N/A N/A N/A Y Electric Vehicle Ranger N/A GY GY N/A N/A N/A N/A Escape N/A GY Y Y Y Y Escort G GY Y N/A N/A N/A N/A N/A Excursion N/A GY Y Y Y N/A N/A N/A N/A Expedition G GY GY Y Y O O Explorer, Explorer Sport, and Explorer Sport Trac G GY Y Y Y Y DG F150 - F550 (Cuautitlan Plant) G GY Y Y Y N/A N/A N/A F250 - F550 (Kentucky Truck Plant) G GY Y Y Y Y O O F150 - F550 (All other plants) G GY Y Y Y Y O O N/A N/A N/A N/A N/A N/A O Fiesta GY GY (prior to 7/15/02) Crown Victoria GY (prior to 1/7/02) Y (from 1/7/02) GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) Y (prior to 1/19/09) DG (from 1/19/09) DG Y (prior to 2/22/10) O (from 2/22/10) DG (prior to 7/11/11) O (from 7/11/11) N/A Y (prior to 11/16/10) O (from 11/16/10) GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 2/4/02) Y (from 2/4/02) Y GY (prior to 7/15/02) Y (from 7/15/02) N/A N/A N/A N/A N/A N/A Freestar N/A N/A N/A N/A Y Y Focus N/A GY Fusion N/A N/A Mustang (including Cobra) G GY Ranger G GY Super Duty F53 Stripped Chassis (Trumac) G GY Taurus G GY Thunderbird N/A N/A Transit Connect N/A N/A Y (from 7/15/02) N/A GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) Y GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) N/A Windstar G GY GY All other vehicles not otherwise noted G GY N/A N/A O DG (prior to 7/11/11) Flex GY (prior to 7/15/02) O Y (prior to 1/19/09) O (from 7/11/11) O DG (prior to 7/11/11) DG DG N/A N/A N/A N/A Y Y Y Y O N/A Y Y Y Y Y Y O O Y Y Y Y Y N/A Y Y Y Y Y Y Y Y DG DG Y Y N/A N/A N/A N/A N/A N/A N/A O O O N/A N/A N/A N/A N/A Y Y N/A N/A N/A GY (prior to 7/15/02) Y (from 7/15/02) N/A DG (from 1/19/09) Y (prior to 5/18/09) DG (from 5/18/09) Y (prior to 7/6/09) DG (from 7/6/09) DG O (from 7/11/11) DG (prior to 8/15/11) O (from 8/15/11) DG (prior to 7/11/11) O (from 7/11/11) Revised 6/8/11 Quick Reference Charts | 1 | Service Coolant Usage Chart Model Year(s) Vehicle Pre-1999 1999-2001 2002 2003 2004-2008 2009 2010 2011 2012 N/A Y Y N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Y Y N/A N/A N/A N/A N/A N/A Lincoln Aviator N/A N/A Blackwood N/A GY Continental G GY LS N/A GY MKS N/A N/A GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) N/A MKT N/A N/A N/A N/A N/A MKX N/A N/A N/A N/A Y MKZ N/A N/A N/A N/A Y Navigator G GY GY Town Car G GY GY All other vehicles not otherwise noted G N/A N/A G O O GY (prior to 7/15/02) Y (prior to 5/18/09) Y (prior to 5/18/09) DG (from 5/18/09) DG (from 5/18/09) N/A Y (prior to 1/19/09) DG (from 1/19/09) Y Y Y Y Y N/A Y N/A Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) DG DG Y (prior to 7/6/09) DG (from 7/6/09) Y (prior to 2/22/10) DG DG DG (prior to 7/11/11) O (from 7/11/11) DG (prior to 7/11/11) O (from 7/11/11) DG (prior to 7/11/11) O O (from 7/11/11) DG DG (prior to 8/15/11) O (from 8/15/11) O O Y Y N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A Y Y Y Y N/A N/A N/A N/A N/A N/A O (from 2/22/10) Mercury Cougar Grand Marquis G GY Sable G GY Marauder N/A N/A N/A Mariner N/A N/A N/A Milan N/A N/A Monterey N/A N/A Mountaineer G GY All other vehicles not otherwise noted G GY GY GY (prior to 7/15/02) Y (from 7/15/02) GY (prior to 7/15/02) Y (from 7/15/02) Y GY (prior to 7/15/02) Y Y (prior to 5/18/09) DG (from 5/18/09) Y N/A N/A N/A Y Y Y N/A N/A Y Y N/A N/A Y N/A Y Y N/A Y GY (prior to 7/15/02) Y (from 7/15/02) GY Y (from 7/15/02) Y (prior to 7/6/09) Y (prior to 11/16/10) O (from 11/16/10) N/A DG N/A N/A N/A N/A Y Y N/A N/A N/A N/A N/A N/A DG (from 7/6/09) Usage Notes:


WVO Final Report B 96%

        CALIFORNIA POLYTECHNIC STATE UNIVERSITY  Alternative Fuels Laboratory  BRAE 434  Spring Quarter 2016              Instructor: Art MacCarley    Solar Waste Vegetable Oil Processor    June 03, 2016                        Andrew Hostler  Steven Schwartz  Chris Chavez  Nathanael DeBruno  Abstract  Every year, countless gallons of vegetable oil are used in the foodservice industry to  make many different kinds of food. This vegetable oil can find a second life in the form of  biodiesel. Currently in Yellowstone National Park, a fleet of buses runs on BioDiesel. This  allows them to reuse much of the food waste from their millions of tourists every year.  Similarly, Cal Poly Corporation on the CPSU campus feeds 20,000 students for most of  the year producing excess food waste. The BioDiesel filtration shed made for our class, EE 434,  allows Cal Poly’s excess food waste to be put to good use. Students at Cal Poly can aquire french  fry oil by the barrel from Cal Poly Corporation. This fuel is then processed for use in the Future  Fuels Club’s multi fuel tractor.    Introduction  The following report is a detailed account of the design, procedure, and materials used to  complete the solar WVO processor located in the alternative fuels shed at Cal Poly. The goal of  this project was to further improve upon the work of students from previous quarters by  automating the WVO conversion process.    Equipment and Materials  ½ inch PVC pipe  ½ inch copper pipe  ⅜ inch copper tubing  ½ inch flexible tubing  ½ inch brackets  Coolant reservoir tank  Screws and anchors  Brass, copper, PVC fittings  24 to 12V buck converter  Temperature sensors  Switches  Custom Arduino board  Hammer drill and accessories  Propane torch        Design Requirements  The main requirement of the project was to implement an easy to use control system for  the processor. First, the control system needed to control the filtering system with the flip of a  switch. This means this one switch would turn on the 12 volt pump, controlling the coolant loop,  and the 24 volt scooter motor, controlling the WVO loop. The control system also needed to  decide when to run the WVO loop which was dependent on the temperature of the coolant  entering the coil of the WVO barrel. Finally the control system needed to shut the system off  when the process was complete.  Along with the control system, the project hardware needed to be brought up to code.  Therefore, all the existing piping needed to be ripped out. The ¾ inch PVC, used for the coolant  loop, that ran from the solar thermal array to the shed was to be replaced by ½ inch PVC. The  flex cable used in the WVO loop that was placed outside of the shed was to replaced with ½ inch  hard copper pipe. Then, the ½ inch PVC and copper piping was to enter through the window of  the shed. Once the piping was inside the shed, flexible pipes could be implemented.  Finally, the system was to be controlled using four batteries wired up to be a 24 volt  supply.    Procedure  First, we ripped out all the existing piping. Then, we connected ½ pvc to the solar thermal  array using two brass fittings and two PVC connectors. Making only 90 degree angles we  connected  all the PVC, using primer and glue for all  connections, for the up and down coolant loop on the roof.  We proceeded to feed the PVC through the window at a  90 degree angle, this was only possible with ½ inch  piping, anything larger would not have fit through the  window. Then, we  connected the pushing  coolant loop directly to the  12 volt pump with all ½  inch PVC pipe, no flex  tubing. On the bottom end  of the pump, we connected flex tubing which was placed in the  coolant reservoir. The falling coolant loop was hard piped to near  the 12 volt pump. From there we switched to the coolant flex pipe  which was connected the copper coil inside of the barrel. At the  bottom of the copper coil, flex tubing was fed into the coolant reservoir. This completed the  coolant loop.    Next, we worked on the copper pipe for the WVO loop. For reference, all connections  were cleaned on the inside and outside of the copper pipe with the designated brush, then flux  was applied on the outside of the pipes before soldering the  copper connections. The copper pipe ran from the 24 volt  pump out of the box, was ran to be flush with the wall, the  two copper lines ran side­by­side up to and through the  window. Then the copper pipe ran down to the wall inside  the shed. From there, we connected the copper tubing. For  testing purposes we left the copper tubing unconnected from  the barrel so we could visually see the WVO loop worked  properly without having to use the barrel for testing. This  completed the WVO loop.  After the piping was completed, we used the hammer  drill to drill holes on the roof and on the walls of the shed,  both inside and outside. The holes were filled with all  purpose anchors, and ½ inch brackets were screwed into the  anchors. Brackets were used on the roof to secure the PVC, on the outside wall to secure the  copper piping,and inside to secure both the PVC and copper piping. Then, the 12 volt pump was  screwed into anchors. Finally, the coolant reservoir was screwed into the anchors in the walls  directly under the 12 volt pump.    Finally, we built in an automated sensing and control system for the shed. This was built  using an Arduino open­source software base, integrating the sensors to an AtMega328 processor.  First, the custom printed circuit board was designed in CadSoft Eagle. This application is  used by many businesses and hobbyists alike to create their own robust microcontroller systems.  The board was then exported to a manufacturing set of files, and sent to Bay Area Circuits for  fabrication.    Next, the board was assembled and  programmed. This board was  modeled after the Arduino  Duemilanove (2009), an early  prototype of the Arduino Uno. As  such, you could program the  processor in an Arduino Uno for  testing, the “pop” the chip into the  board once fully programmed. This  board controlled four low­side switches  in parallel with the manual pump  switches.  Finally, the processor with the Arduino code was tested  with the switches and various sensor readings on the  two temperature sensors. If the Arduino code needs to  be edited in the future, the arduino code is in Appendix  A. Any student wishing to reprogram needs only to swap the processor chip with an Arduino  Uno, program it with modified code from the appendix, then swap the chips back.    Testing  The WVO loop consisting of copper pipe, copper tubing, and the 24 volt scooter motor  was ran for five minutes, using water, with no problems detected. The coolant loop was tested  using the buck converter for the 12 volt pump. Multiple problems arose, the coolant reservoir  used was not large enough to supply the whole loop with enough water to pump through the  whole system. We ran the system until the coolant reservoir was depleted and shut the pump off.  While waiting for the water to return to the reservoir, the water returning to the reservoir was  steaming. As we watched this process, the PVC pipe inside the shed was beginning to droop. The  PVC pipe made its own 90 degree angle because the water that made it to the solar thermal array  became too hot for the PVC to handle. We waited for the PVC to cool down and we tested it  again. This time we used a larger bucket so there was enough water to fill the coolant loop. We  ran this loop for ten minutes and by the end of it the PVC inside the shed on the return loop had  drooped down about an inch. Therefore, the WVO loop and coolant loop work as  planned;however, the PVC pipe just can’t handle the heat of the system.    Conclusion  While the system runs currently, further improvements still need to be made. Firstly, the  PVC pipe used is not adequate for the near boiling water coming out of the solar array.  Additionally, there needs to be a better way to transport oil to and from the processing barrel.


M14 95%

INSPECTION ITEM NORMAL CONDITION (INSPECTION CONDITION) 1 - 41 No.1 injector 13 - 16 Ω [at 20°C (68°F)] 9 - 41 No.2 injector 24 - 41 No.3 injector 2 - 41 No.4 injector 14 - 41 Stepper motor coil (A1) 28 - 41 Stepper motor coil (A2) 15 - 41 Stepper motor coil (B1) 29 - 41 Stepper motor coil (B2) 6 - 41 EGR solenoid 29 - 35 Ω [at 20°C (68°F)] 34 - 41 Evaporative emission purge solenoid 30 - 34 Ω [at 20°C (68°F)] 42 - Body ground PCM ground Continuity (0 Ω) 48 - Body ground PCM ground 26 - 41 Heated oxygen sensor heater (rear) 11 - 18 Ω [at 20°C (68°F)] 35 - 41 Evaporative emission ventilation solenoid 17 - 21 Ω [at 20°C (68°F)] 3 - 41 Heated oxygen sensor heater (front) 4.5 - 8.0 Ω [at 20°C (68°F)] 57 - 64 Intake air temperature sensor 13 - 17 kΩ [when intake air temperature is -20°C (-4°F)] 28 - 33 Ω [at 20°C (68°F)] 5.3 - 6.7 kΩ [when intake air temperature is 0°C (32°F)] 2.3 - 3.0 kΩ [when intake air temperature is 20°C (68°F)] 1.0 - 1.5 kΩ [when intake air temperature is 40°C (104°F)] 0.56 - 0.76 kΩ [when intake air temperature is 60°C (140°F)] 0.30 - 0.42 kΩ [when intake air temperature is 80°C (176°F)] 44 - 57 Engine coolant temperature sensor 14 - 17 kΩ [when engine coolant temperature is -20°C (-4°F)] 5.1 - 6.5 kΩ [when engine coolant temperature is 0°C (32°F)] 2.1 - 2.7 kΩ [when engine coolant temperature is 20°C (68°F)] 0.9 - 1.3 kΩ [when engine coolant temperature is 40°C (104°F)] 0.48 - 0.68 kΩ [when engine coolant temperature is 60°C (140°F)] 0.26 - 0.36 kΩ [when engine coolant temperature is 80°C (176°F)] 1/13/2012


p206cc 1-6 16v ME7-4-4 95%

A16 ABS control module B161 AC refrigerant pressure sensor B138 Accelerator pedal position (APP) sensor G1 Alternator 31 Battery - 30 Battery + S13 Brake pedal position (BPP) switch CAN-H Controller area network (data bus) high CAN-L Controller area network (data bus) low B54 X1 Crankshaft position (CKP) sensor Data link connector (DLC) A207 Electronic stability program (ESP) control module A35 Engine control module (ECM) M6 Engine coolant blower motor K12 Engine coolant blower motor relay K12-I Engine coolant blower motor relay 1 K12-II Engine coolant blower motor relay 2 R46 Engine coolant blower motor resistor B24 Engine coolant temperature (ECT) sensor S186 Engine coolant temperature (ECT) switch H63 Engine malfunction indicator lamp (MIL) Y104 Evaporative emission (EVAP) canister purge valve M12 Fuel pump F Fuse X28-II Fuse box/relay plate, engine bay 1 X28-III Fuse box/relay plate, engine bay 2 X28-I Fuse box/relay plate, fascia B72-I Heated oxygen sensor (HO2S) 1 B72-II Heated oxygen sensor (HO2S) 2 T1 Ignition coil S1 Ignition switch 15 Ignition switch - ignition ON Y3 Injector A5 Instrument panel A75 Instrumentation control module B25 Intake air temperature (IAT) sensor B69 Knock sensor (KS) B83 Manifold absolute pressure (MAP) sensor A11-I Multifunction control module 1 A11-II Multifunction control module 2 S231 Power steering pressure (PSP) switch M89 Throttle motor B169 Throttle motor position sensor VAN Vehicle area network B33 Vehicle speed sensor (VSS) bl = blue br = brown el = cream ge = yellow gn = green gr = grey nf = neutral og = orange rs = pink rt = red sw = black vi = violet ws = white hbl = light blue hgn = light green rbr = maroon x = braided cable y = high tension z = non-cable connection NOTE:


ltg-crate-engine-specifications-19328837-1 92%

Cooling System Description Coolant flows from the water pump outlet into the engine block.



MILES EVERCOOL MULTI DUTY GREEN ANTIFREEZE Miles Evercool Heavy Duty Antifreeze/Coolant is a fully formulated heavyduty antifreeze/coolant requiring no additive (SCA) precharge.


M13 89%

3,000 r/min 0.3 - 3.0 V 44 Engine coolant temperature sensor Ignition switch:


Acura Quote 88%



Final 85%

after, every 90.000 km (54.000 miles) Inverter coolant 06/10 R Every 12 months R R R R I S-LLC (pink) *4 R R R R R R R R R R Cooling and heater system *2 Engine coolant R R R R R R R R R Normal Engine oil filter R R R R Normal (ILSAC) R Initial:


kd 81%

Bosch Motronic ML4.1 (Kat.) Opel Omega A 2,0i Omega A/Carlton PDF создан версией pdfFactory Pro для ознакомления Bosch Motronic ML4.1 (Kat.) A20 A24 B16 B21 B22 B34 B46 F10 H11 K39 M11 S24 T13 X11 X13 X14 X15 Y11 Y12 Y13 Y14 Y34 Y40 Tachometer Instrument cluster Inductive crankshaft position sensor Vehicle speed sensor Coolant temperature sensor Air flow meter with CO potentiometer O2-sensor with pre-heater Fuse ECU lamp System relay Fuel pump Idle/ full throttle switch Ignition coil Diagnostic connector Octane adjustment Ground connection Cable screen Injector 1 Injector 2 Injector 3 Injector 4 Canister purge valve Idling control valve PDF создан версией pdfFactory Pro для ознакомления Troubleshooting-data Model:


przeglady czynnosci 80%

Every 48 months ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●* ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●* ● ● ● ● ● ● ● ● ● ● ● ● ― Replace every 180.000 km (108.000 miles) Replace every 120.000 km (72.000 miles) R R R R F F F F Fill every 105.000 km LPG gas filter Auris TS HSD 2ZR-FXE R Every 6 months R Every 12 months R S-LLC (pink) *4 1ZR-FAE R Every 12 months R R S-LLC (blue) *4 Auris HSD Auris TS 2ZR-FXE 1NR-FE Every 12 months R S-LLC (pink) *4 Fuel filter I Severe Engine coolant Spark plugs R I R R R R Cooling and heater system *2 Inverter coolant I Months ( ):


Bulletproof Procedure 80%

long t40, t45 mainly) • Pipe wrenches • Hammer • Pry bar Specialty Tools • Fuel/Transmission line quick disconnect tool • Ford 6.0 head lift bracket • Cherry Picker • Ford 6.0 Glow plug harness tool • Ford 6.0 Fan clutch removal tool • Ford 6.0 injector wire removal tool • Crow foot socket • Ford 6.0 IPR Socket • Ford 6.0 head bolt remover tool • Ford 6.0 oil filter cap socket Fluids • 4 Gallons Engine Oil • 4 Gallons Engine Coolant • 10 gallons distilled water • Transmission Oil • Fuel Filters • Engine Oil Filter Prep 1.


510116 Nickerson Technical 77%

But as long as the system is sealed and holds pressure, a radiator cap rated at 15 psi will increase the boiling temperature of a 50/50 coolant blend up to 265 degrees F.


FORD 76%

Freestyle 4 GREEN COOLANT:


2005 TL - Alternator Removal and Installation 76%

3. Disconnect the A/C condenser fan motor connector (A) and the A/C compressor clutch connector (B), then remove the coolant reserveior (C).


htt-cnc-deep-hole-drilling-machine-2016-7 76%

2 3 Model KB-600 KB-800 KB-1000 KB-1300 KB-1300H KB-1600L Ф2-Ф25 0.08-0.98 830x600 32.68*23.62 600 23.62 600 23.62 600 23.62 6000 (opt 8000) 8 1160 6 13200 5 11000 Ф2-Ф25 0.08-0.98 930x745 36.61*29.33 800 31.5 600 23.62 800 31.5 6000 (opt 8000) 8 1160 7 15400 7 15400 Ф2-Ф30 0.08-1.18 1160x900 45.67*35.43 1000 39.37 1000 39.37 1000 39.37 6000 (opt 8000) 8 1160 9 19800 9 19800 Ф2-Ф30 (opt 38) 0.08-1.18 (1.50"opt) 1500x900 59.06*35.43 1350 53.15 1000 39.37 1300 51.18 6000 (opt 8000) 8 1160 10 22000 10 22000 Ф2-Ф30 (opt 38) Ф2-Ф30 (opt 38) 0.08-1.18 (1.50"opt) 0.08-1.18 (1.50"opt) 2100x1300 1500x900/1700x1000 82.68*51.18 59.06*35.43/66.93*39.37 2200 1600 86.61 62.99 1000 1000 39.37 39.37 1300 1600 51.18 62.99 6000 (opt 8000) 6000 (opt 8000) 8 8 1160 1160 14 10 30800 22000 18 11 39600 24200 FANUC / SIEMENS (opt) / SYNTEC (opt) KB-1600 KB-1600H KB-2000 KB-2000H Ф2-Ф30 (opt 38) 0.08-1.18 (1.50"opt) 1800x1250 70.87*49.21 1600 62.99 1150 45.28 1600 62.99 6000 (opt 8000) 8 1160 14 30800 13 28600 Ф3-Ф38 0.12-1.5 2100x1300 82.68*51.18 2200 86.61 1150 (opt 1500) 45.28 (opt 59.21) 1600 62.99 6000 8 1160 15 33000 19 41800 Ф3-Ф38 0.12-1.5 2100x1300 82.68*51.18 2200 86.61 1150 (opt 1500) 45.28 (opt 59.21) 2000 78.74 6000 8 1160 16 35200 19 41800 Ф3-Ф38 0.12-1.5 3100x1500 82.68*51.18 3000 118.11 1200 (opt 1500) 47.24 (opt 59.21) 2000 78.74 6000 8 1160 18 39600 24 52800 Specifications Drilling dia range Table size X axis Y axis Maximun drilling depth Spindle speed Max coolant pressure Table load Weight controller (mm) (inch) (mm) (inch) (mm) (inch) (mm) (inch) (mm) (inch) (RPM) (Mpa) (PSI) (T) (lbs) (T) (lbs) German standard | High efficiency | High accuracy Deep Hole Drilling &


x-type jtp981 74%

X X X X X X Renew coolant.


repair 68%

use coolant instead of water.


RCMN-14V053-8582 65%

3/18/2014 Super Long Life Coolant Sublet Added To:


Atomenergoproekt BN-800 NPP 64%

yy system (also passive) of residual heat removal through air heat exchangers connected to every loop of the secondary coolant circuit;


28014324 61%

They act according to the passive principles and drop into the core when the coolant flowrate decreases to 50% of nominal value.


S5P~us~en~file=S5PC2004~gen~ref 60%

• Clean and lubricate the coolant hoses with plain water only if needed.


BWA 15 2Q FastForwardSlides 60%

EGR tubes  Integrated EGR Modules  Secondary Air Systems  Actuators  Glow Plugs  Instant Start System  Pressure Sensor Glow Plugs  Gasoline Ignition Technology  Sensor Technology  PTC Cabin Heaters  Thermostats  Coolant Control Valves  DualTronic® Systems for Dual  AWD Couplings Clutch Transmissions  Transfer Cases  ECO-LaunchTM Stop/Start  eGearDrive® Electric Accumulator Solenoid Valves Drive Transmissions  Solenoids &