Search


PDF Archive search engine
Last database update: 13 May at 15:25 - Around 76000 files indexed.


Show results per page

Results for «reinforcement»:


Total: 500 results - 0.069 seconds

kms 97%

-Applications of Classical Conditioning -Aversian Therapy​- inhibit/discourage an unwanted behaviour by pairing a response with something undesirable Operant Conditioning-​ ​learning behaviour is explained by consequences and reinforcement rather than due to external stimuli -B.F Skinner based his theory off of Thorndike’s law of effect, and introduced reinforcement into the theory:

https://www.pdf-archive.com/2016/11/11/kms/

11/11/2016 www.pdf-archive.com

MWO airlift bumper 93%

MWO 9-2320-280-20-6 MODIFICATION WORK ORDER MODIFICATION OF 1-1/4 TON VEHICLES HEAVY VARIANT, ARMAMENT CARRIER, AND EXPANDED CAPACITY VEHICLES M1097, M1097A1, M1025A2, M1097A2, M1113, AND M1114 AIRLIFT BUMPER REINFORCEMENT Headquarters, Department of the Army, Washington, D.C.

https://www.pdf-archive.com/2013/12/28/mwo-airlift-bumper/

28/12/2013 www.pdf-archive.com

Panel 6 93%

1hr LOADING ON SLAB 3.2.1.2.2     3.6 KN/m2 Self weight of slab 1.2 KN/m2 Finishes 1 KN/m2 Partitions [minimum] 5.8 KN/m2 gk Characteristic dead load 3 KN/m2 qk Characteristic imposed load 12.92 KN/m2 n Design load [1.4g k +1.6qk] DESIGN MOMENTS AND REINFORCEMENTS 1.357 Aspect ratio of slab 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, Area of steel required, As Minimum reinforcement area         BS8110 REF CALCULATIONS LONG SPAN [SUPPORT] Table 3.14 Table 3.14 Support moment coefficient Support moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, Area of steel required, 2 5.8 KN/m 2 3 KN/m 2 12.92 KN/m  Midspan moment coefficient Midspan moment Effective depth of beam , 3.4.4.4 3.4.4.4      SHORT SPAN [MIDSPAN] Table 3.14 Table 3.14  cover 20 mm Fire resistance OK As         0.069 8.574 KNm 124 mm 0.0279 0.95 d 117.80 mm M 0.95 fy z 187 mm2 195 mm2 Provide Y12  OUTPUT 0.045 5.632 KNm 112 mm 0.0225 0.95 d 106.40 mm M 0.95 fy z at 250 2 453 mm Area of steel required,    As LONG SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Midspan moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4  K Lever arm, z, Area of steel required, As BS8110 REF DEFLECTION CHECK Table 3.9 [d] M bd2 fcu M 0.95 fy z 136 mm2        CALCULATIONS 0.95 d 106.40 mm M 0.95 f y z 103 mm2     y sreq sprov  Table 3.10 Modification factor  0.55 Y 12 (477  fs )  2.0 M ) 2 bd 300 mm2 119.7 mm 1.0 453 mm2 187 mm2 * 1 b  2.00 59.86 mm  124 mm Cracking is controlled by limiting bar spacing.

https://www.pdf-archive.com/2017/06/11/panel-6/

11/06/2017 www.pdf-archive.com

NTP RK in English - construction norms, standards and regulations of the Republic of Kazakhstan 93%

Determination of loads and actions https://gostperevod.com/ntp-rk-01-04-1-2012.html NTP RK 02-01.2-2012 in English - Designing of reinforced concrete structures taking into account fire-resistance https://gostperevod.com/ntp-rk-02-01-2-2012.html NTP RK 02-01-1.1-2011 in English - Designing of concrete and reinforced concrete structures made of heavy weight concrete without prestressing of reinforcement NTP RK 02-01-1.2-2011 in English - Designing of concrete and reinforced concrete structures made of heavy weight concrete with prestressing of reinforcement NTP RK 02-01-1.3-2011 in English - Designing of reinforced concrete structures made of lightweight concrete https://gostperevod.com/ntp-rk-02-01-1-3-2011.html NTP RK 02-01-1.4-2011 in English - Designing of prefabricated, cast-in-place and cast-in-situ reinforced concrete structures https://gostperevod.com/ntp-rk-02-01-1-4-2011.html NTP RK 02-01-1.5-2012 in English - Designing of statically undeterminable reinforced concrete structures taking into account redistribution of forces https://gostperevod.com/ntpNTP RK 02-01-1.6-2013 in English - Calculation and designing of flat slab floors https://gostperevod.com/ntp-rk-02-01-1-6-2013.html NTP RK 02-01-1.7-2013 in English - Concrete and reinforced concrete structures made of foamed concrete https://gostperevod.com/ntp-rk-02-01-1-7-2013.html NTP RK 02-02.1-2012 in English - Designing of bridges.

https://www.pdf-archive.com/2018/06/14/untitled-pdf-document-17/

14/06/2018 www.pdf-archive.com

Rotary Drilling Hose 92%

tube, reinforcement and cover.

https://www.pdf-archive.com/2016/01/25/rotary-drilling-hose/

25/01/2016 www.pdf-archive.com

Panel 1 92%

1hr       Self weight of slab m m mm 2 N/mm 3.6 KN/m 2 1.2 KN/m 2 1 KN/m 2  cover Fire resistance OK 5.8 KN/m2 gk 3 KN/m2 qk 12.92 Design load [1.4gk +1.6qk] DESIGN MOMENTS AND REINFORCEMENTS 1.659 Aspect ratio of slab SHORT SPAN [SUPPORT] 0.084 Support moment coefficient 10.738 Support moment 124 Effective depth of beam , [d] M 0.0279 K bd2 fcu 0.95 Lever arm, z, 117.80 KN/m2    n 20 mm 2 5.8 KN/m 2 3 KN/m 2 12.92 KN/m  Table 3.14 Table 3.14 3.4.4.4 3.4.4.4 3.4.4.4         Area of steel required, As   Minimum reinforcement area SHORT SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Midspan moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 BS8110 REF Table 3.14 Table 3.14 K  [d] M bd2 fcu Lever arm, z, Area of steel required, LONG SPAN [SUPPORT] Support moment coefficient Support moment Effective depth of beam , As         KNm mm d mm M 0.95 f y z 234 mm 2 195 mm2 [d] Y 12 at 250  2 453 mm 0.063 8.046 KNm 124 mm 0.0209 0.95 d 117.80 mm M 0.95 f y z 175 mm 2 Provide  CALCULATIONS    Provide 0.045 5.769 KNm 112 mm Y 12 OUTPUT at 300 2 377 mm 3.4.4.4 3.4.4.4 3.4.4.4 K  M bd2 fcu Lever arm, z, As Area of steel required, LONG SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Midspan moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, Area of steel required, As     0.0184 0.95 d 106.40 mm M 0.95 f y z   139 mm        2 Provide Y 12 at 300 Provide Y 12 2 377 mm 0.034 4.359 KNm 112 mm 0.0139 0.95 d 106.40 mm M 0.95 f y z  105 mm 2 377 at 300 mm2 2 377 mm BS8110 REF Table 3.9 DEFLECTION CHECK CALCULATIONS  Basic minimum effective depth for short span Moment redistribution factor   Tension reinforcement area required Table 3.10 Modification factor 3.12.11.2.7 Modified minimum effective depth CRACKING Cracking is controlled by limiting bar spacing.

https://www.pdf-archive.com/2017/06/11/panel-1/

11/06/2017 www.pdf-archive.com

Panel 3 92%

1hr  Self weight of slab Partitions [minimum] Characteristic imposed load   Design load [1.4gk +1.6qk]  Characteristic dead load  cover Fire resistance OK 20 mm 3.6 KN/m2   Finishes 3.2.1.2.2 6.23 m 5.23 m 150 mm 2 25 N/mm 1.2 KN/m2 1 KN/m2 5.8 KN/m2 gk 3 KN/m2 qk 12.92 KN/m2  2 5.8 KN/m   n 2 3 KN/m 2 12.92 KN/m DESIGN MOMENTS AND REINFORCEMENTS 1.191 Aspect ratio of slab          SHORT SPAN [SUPPORT] Table 3.14 Table 3.14 Support moment coefficient Support moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, As Area of steel required, 0.0508 0.94 d 116.55 mm M 0.95 f y z 430 mm2 Provide Y12 at  195 mm2 Minimum reinforcement area BS8110 REF 0.055 19.540 KNm 124 mm CALCULATIONS 200 2 566 mm OUTPUT SHORT SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Support moment Effective depth of beam , 3.4.4.4 K 3.4.4.4 3.4.4.4  [d] M bd2 fcu Lever arm, z, Area of steel required, As                 0.041 14.632 KNm 124 mm 0.0381 0.95 d 117.80 mm M 0.95 f y z 319 mm2 Provide Y 12 at 250 2 453 mm  BS8110 REFthis PDF from an application thatCALCULATIONS OUTPUT You created is not licensed to print to novaPDF printer (http://www.novapdf.com) LONG SPAN [SUPPORT] Table 3.14 Table 3.14 Support moment coefficient Support moment Effective depth of beam , 3.4.4.4 K 3.4.4.4 3.4.4.4  Lever arm, z, [d] M bd2 fcu Area of steel required, As       0.037 13.051 KNm 112 mm  0.0416 0.95 d 106.40 mm M 0.95 f y z  315 mm2 Provide Y12 at Provide Y12 250 2 453 mm LONG SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Support moment Effective depth of beam , 3.4.4.4 K 3.4.4.4 3.4.4.4 Lever arm, z,  [d] M bd2 fcu Area of steel required, As        0.028 9.876 KNm 112 mm 0.0315 0.95 d 106.40 mm M 0.95 f y z  238 mm2 at 300 2 377 mm DEFLECTION CHECK Table 3.9 Basic minimum effective depth for short span Moment redistribution factor    Tension reinforcement area provided Tension reinforcement area required Design service stress 201.0 mm 1.0   fs  Table 3.10 Modification factor 3.12.11.2.7 Modified minimum effective depth CRACKING Cracking is controlled by limiting bar spacing.

https://www.pdf-archive.com/2017/06/11/panel-3/

11/06/2017 www.pdf-archive.com

Panel 4 92%

1hr       Self weight of slab Finishes Partitions [minimum] Characteristic dead load Characteristic imposed load 3.2.1.2.2 3.15 m 2.23 m 150 mm 2 25 N/mm 3.6 KN/m  cover Fire resistance OK 20 mm 2 1.2 KN/m2 1 KN/m 2 2 5.8 KN/m 3 KN/m2 12.92 Design load [1.4gk +1.6qk] DESIGN MOMENTS AND REINFORCEMENTS 1.416 Aspect ratio of slab SHORT SPAN [SUPPORT] 0.075 Support moment coefficient 4.773 Support moment 124 Effective depth of beam , [d] M 0.0124 K bd2 fcu 0.95 Lever arm, z, 117.80 M Area of steel required, As 0.95 f y z KN/m2    gk qk n 2 5.8 KN/m 2 3 KN/m 2 12.92 KN/m  Table 3.14 Table 3.14 3.4.4.4 3.4.4.4 3.4.4.4         Minimum reinforcement area SHORT SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Midspan moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, Area of steel required, As KNm mm d mm   104 mm2        0.056 3.558 KNm 124 mm  195 mm Provide Y 12 at 300  2 2 377 mm 0.0093 0.95 d 117.80 mm M 0.95 f y z 78 mm2 Provide Y 12 at 300 2 377 mm  BS8110 REF CALCULATIONS OUTPUT LONG SPAN [SUPPORT]  0.045 Table 3.14 Support moment coefficient 2.878 KNm Table 3.14 Support moment You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)  Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, As Area of steel required,       112 mm 0.0092 0.95 d 106.40 mm M 0.95 f y z   69 mm2 Provide Y 12 at 300 377 mm 2 LONG SPAN [MIDSPAN] Table 3.14 Table 3.14 Midspan moment coefficient Midspan moment Effective depth of beam , 3.4.4.4 3.4.4.4 3.4.4.4 K  [d] M bd2 fcu Lever arm, z, Area of steel required, As        0.034 2.175 KNm 112 mm 0.0069 0.95 d 106.40 mm M 0.95 f y z  Provide 52 mm2 Y 12 at 300 mm 377 2 2 377 mm BS8110 REF CALCULATIONS OUTPUT DEFLECTION CHECK Table 3.9 Basic minimum effective depth for short span Moment redistribution factor     Tension reinforcement area provided Tension reinforcement area required Design service stress 85.6 mm 1.0 fs  377 mm 78 mm2 2 f y Asreq  Table 3.10 Modification factor 3.12.11.2.7 Modified minimum effective depth CRACKING Cracking is controlled by limiting bar spacing.

https://www.pdf-archive.com/2017/06/11/panel-4/

11/06/2017 www.pdf-archive.com

social wanting dysfunction autism asd 91%

neurobiological underpinnings and treatment implications Gregor Kohls*, Coralie Chevallier, Vanessa Troiani and Robert T Schultz Abstract Most behavioral training regimens in autism spectrum disorders (ASD) rely on reward-based reinforcement strategies.

https://www.pdf-archive.com/2017/10/17/social-wanting-dysfunction-autism-asd/

17/10/2017 www.pdf-archive.com

Panel 2 90%

Ref Design Calculations ONE-WAY SPANNING SLAB (PANEL 5) 12.92 N/mm2 BS 8110 1725 Output mm Depth of slab Span of Slab 150 mm 1725 mm 2 25 N/mm 2 410 N/mm 25 mm 12 mm 3 2400 kg/m 119 mm Characteristic strength of concrete Characteristic strength of steel Concrete Cover Diameter of Main bar 3.4.4.4 Concrete Density Effective Depth LOADING Slab Self Weight Partition allowance Finishes Total Dead load Imposed Load Ultimate Dead Load Moment K= Lever arm, z,     3.6 1.2 1.0 5.8 3 12.92 4.81    Area of steel required, Provide kNm 0.0136  0.95 d 113.05 mm M 0.95 f y z  A s Y 2 N/mm 2 N/mm 2 N/mm 2 N/mm 2 N/mm2 N/mm 12 at  250 452.6  109.14  Minimum reinforcement area 195 Distribution Reinforcement 0.13% ℎ As(req) 195  a t Provide 12 300 Y 377.14 Deflection Check Basic 26   Table 3.9   Moment redistribution factor Tension reinforcement area provided Tension reinforcement area required 1.0 452.57 109.14    fs Design service stress  Table 3.10 3.12.11.2.7  Modification factor Permissible Actual Crack Check Allowable crack width  2 f y Asreq 3Asprov * 1 b 2 65.91 N/mm 0.34 0.55  (477  fs )  2.0 M ) bd2 120(0.9   52.00 14.50   2.00 3d OK 357 OK You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

https://www.pdf-archive.com/2017/06/11/panel-2/

11/06/2017 www.pdf-archive.com

Panel 5 90%

Ref Design Calculations ONE-WAY SPANNING SLAB (PANEL 5) 12.92 N/mm2 BS 8110 2225 Output mm Depth of slab Span of Slab 150 mm 2225 mm 2 25 N/mm 2 410 N/mm 25 mm 12 mm 3 2400 kg/m 119 mm Characteristic strength of concrete Characteristic strength of steel Concrete Cover Diameter of Main bar 3.4.4.4 Concrete Density Effective Depth LOADING Slab Self Weight Partition allowance Finishes Total Dead load Imposed Load Ultimate Dead Load Moment K= Lever arm, z,    3.6 1.2 1.0 5.8 3 12.92 8.00     Area of steel required, Provide 0.0226  Y 12 at  250 452.6  kNm 0.95 d 113.05 mm M 0.95 f y z  A s N/mm2 N/mm2 N/mm2 N/mm2 N/mm22 N/mm 181.57  Minimum reinforcement area 195 Distribution Reinforcement 100 0.13% ℎ As(req) 195  a t Provide 12 250 Y 452.57 Deflection Check Basic 26   Table 3.9   Moment redistribution factor Tension reinforcement area provided Tension reinforcement area required fs Design service stress  Table 3.10 3.12.11.2.7  Modification factor Permissible Actual Crack Check Allowable crack width     2 f y Asreq 0.56 0.55 3Asprov * 1 b (477  fs )  2.0 M ) bd2 120(0.9   109.66 N/mm2 2.00 52.00 18.70   1.0 452.57 181.57 3d OK 357 OK

https://www.pdf-archive.com/2017/06/11/panel-5/

11/06/2017 www.pdf-archive.com

NTP RK in English, normative-technical reference book RK, all normative-technical handbooks of the Republic of Kazakhstan in English 89%

Designing of concrete and reinforced concrete structures made of heavy weight concrete without prestressing of reinforcement Description in Russian:

https://www.pdf-archive.com/2018/07/22/untitled-pdf-document-19/

22/07/2018 www.pdf-archive.com

3dpanel 88%

Ruiwanda 3D PANEL EASE IN INSTALLATION &

https://www.pdf-archive.com/2016/03/15/3dpanel/

15/03/2016 www.pdf-archive.com

Thomas Snell Curriculum Vitae Current 88%

Skills Platforms / Languages • • • • • • • Machine Learning / AI Big Data / Data Science Computational Physics / Geophysics Numerical Simulation Natural Language Processing (NLP) Cloud Computing / AWS Deep / Reinforcement Learning • • • • • • Python MATLAB C/C++ Scikit-Learn Tensorflow/Keras Gensim Machine and Deep Learning Projects • Paddle HR Machine Learning/ Data Science Project – Career Path Prediction:

https://www.pdf-archive.com/2018/04/30/thomas-snell-curriculum-vitae-current/

30/04/2018 www.pdf-archive.com

Aluzen System 86%

Hinges 2 leaves or 3 leaves with internal reinforcement plates enabling aluminum refining in the 3 axis .

https://www.pdf-archive.com/2016/07/13/aluzen-system/

13/07/2016 www.pdf-archive.com

HH Backer Spring Show FINAL 3.12.12 86%

FOR IMMEDIATE RELEASE Jersey Shore Dogs to Exhibit at Largest East Coast Pet Industry Trade Show Positive Reinforcement-Based Dog Training Company to Sponsor World Famous RIN TIN TIN OLD BRIDGE &

https://www.pdf-archive.com/2012/03/12/hh-backer-spring-show-final-3-12-12/

12/03/2012 www.pdf-archive.com

Commanders Seat MWO (full) 0009 85%

9AUJloN FOR REINFORCEMENT HOLES AFTEB MAHKING RETAINER, ENSURE THAT THEIH POSITIONS ARE AS SPECIFIED IN FIGURE 11.

https://www.pdf-archive.com/2014/01/04/commanders-seat-mwo-full-0009/

04/01/2014 www.pdf-archive.com