PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

About Share a file Manage my documents Convert Recover Search Help Contact


Search


PDF Archive search engine
Last database update: 05 December at 09:52 - Around 79000 files indexed.

Show results per page

Results for «sample»:


Total: 1000 results - 0.096 seconds

fonts 100%

Aaux OfficeBold This is a sample text in English!

https://www.pdf-archive.com/2018/03/15/fonts/

15/03/2018 www.pdf-archive.com

final-report-english 98%

Each sample was then measured on an HPGe gamma spectrometer (measuring time >

https://www.pdf-archive.com/2013/10/12/final-report-english/

12/10/2013 www.pdf-archive.com

Musshoff JAT Seitenzahl 97%

After the addition of deuterated internal standards the sample was hydrolyzed with sodium hydroxide and directly submitted to HS-SPME.

https://www.pdf-archive.com/2014/11/14/musshoff-jat-seitenzahl/

14/11/2014 www.pdf-archive.com

tech3250 96%

Audio sample word The audio sample word represents the amplitude of a digital audio sample.

https://www.pdf-archive.com/2016/06/19/tech3250/

19/06/2016 www.pdf-archive.com

Fachartikel Analog- versus Digitalscopes 96%

the input signal is captured by writing it into such a shift register, each sample is converted into a charge packet.

https://www.pdf-archive.com/2017/07/06/fachartikel-analog-versus-digitalscopes/

06/07/2017 www.pdf-archive.com

TurnCounterHowto 96%

Setting up the turn counter    Analog triggers  Analog triggers convert analog signals into digital signals using the cRIO’s FPGA. In order to  make the turn counter work, we use an analog trigger to create a digital signal when the  potentiometer “wraps around” from 0° to 360° or 360° to 0°.     Code sample (creating an analog trigger):     AnalogTrigger​  _analogTrigger ​ =​  ​ new​  ​ AnalogTrigger​ (​ channel​ );    Analog trigger outputs  The analog trigger can send outputs in a number of different modes. The two most useful to us  here are Rising Pulse and Falling Pulse. Rising Pulse sends a pulse of digital signal when the  analog signal changes from a value below the minimum voltage you’ve set (hereafter called the  “lower threshold”) to a value above the maximum voltage you’ve set (the “upper threshold”).  Falling Pulse sends a pulse when the signal changes from a value above the upper threshold to  one below the lower threshold. One of these should pulse whenever you hit the potentiometer’s  discontinuity; which one indicates the direction the wheel pod is turning.    Code sample (creating analog trigger outputs):    AnalogTriggerOutput​  _analogTriggerFalling ​ =​  ​ new​  ​ AnalogTriggerOutput​ (​ _analogTrigger​ ,  AnalogTriggerOutput​ .​ Type​ .​ kFallingPulse​ );    AnalogTriggerOutput​  _analogTriggerRising ​ =​  ​ new​  ​ AnalogTriggerOutput​ (​ _analogTrigger​ ,  AnalogTriggerOutput​ .​ Type​ .​ kRisingPulse​ );    Creating the counter  To create a turn counter, we need to count the digital pulses of the analog trigger outputs. When  one pulses, we should increment the counter; when the other pulses, we should decrement it.  Which is which depends on your setup.     Code sample (creating the turn counter):    Counter​  _turnCounter ​ =​  ​ new​  ​ Counter​ ();  _turnCounter​ .​ setUpDownCounterMode​ ();  _turnCounter​ .​ setUpSource​ (​ _analogTriggerRising​ );  _turnCounter​ .​ setDownSource​ (​ _analogTriggerFalling​ );  _turnCounter​ .​ start​ ();    The filter, setting the sample rate and threshold voltages  Although the potentiometer’s discontinuity normally looks like a straight vertical line of voltage, it  isn’t; it’s a very steep, not­quite­vertical line. Thus, when crossing it, there’s a chance that one of  the voltages sampled by the analog trigger will be on that line, which really messes things up.  Luckily, you can enable a filter on the analog trigger’s input that samples three points and  rejects the one closest to average. In this way, so long as no more than one sampled point in a  row lies on the discontinuity and the surrounding points are below / above the lower / upper  threshold voltages, the crossing will still be detected. We need to set the sample rate low  enough that no more than one point can lie on the line.     This graph shows a closeup of the potentiometer’s discontinuity. In theory, so long as the  sample rate is slower than the 520 Hz displayed, no more than one point should lie along the  line. In practice, I found a huge margin of error beneficial; I went with 50 Hz. However, set the  sample rate too low and you run into another problem: the time between samples may be so  great that the times when the signal is above the upper threshold or below the lower threshold  are missed completely. When you lower the sample rate, you need to lower your upper  threshold and raise your lower threshold; doing this too much can result in false positives from  things like signal noise. In order to ensure that the value above the upper threshold isn’t missed,  the difference between the potentiometer’s real maximum voltage and the upper threshold must  be at least equal to the time between samples (in my case, 0.02 seconds) times the maximum  rate of change of the voltage. The same must be true of the difference between the  potentiometer’s real minimum voltage and the lower threshold. I wound up using a  “real­threshold” voltage difference of 0.6V. To get false positives, the two thresholds have to be  pretty close; once again, big safety margins are your friend.    Code sample (enabling input filtering):    _analogTrigger​ .​ setFiltered​ (​ true​ );    Code sample (setting the thresholds):    double​  _sensingVoltageDifference ​ =​  ​ 0.6;  _analogTrigger​ .​ setLimitsVoltage​ (​ minVoltage ​ +​  _sensingVoltageDifference​ ,​  maxVoltage ​ ­  _sensingVoltageDifference​ );    Code sample (setting the sample rate):    int​  DEFAULT_ANALOG_MODULE ​ =​  ​ 1;  int​  ANALOG_SAMPLE_RATE ​ =​  ​ 50​ ;​  ​ //Hz  AnalogModule​  ​ module​  ​ =​  ​ (​ AnalogModule​ )​  ​ Module​ .​ getModule​ (​ ModulePresence​ .​ ModuleType​ .​ kAnalog​ ,  DEFAULT_ANALOG_MODULE​ );  module​ .​ setSampleRate​ (​ ANALOG_SAMPLE_RATE​ );    Computing the new degree measurement  The end goal of this is to create a potentiometer that reads beyond 360°. To get this reading,  simply multiply the turn count by 360° and add the wheel’s current heading.    Code sample (reading the new degree measurement):    double​  heading ​ =​  ​ (((​ voltage ​ ­​  _minVoltage​ )​  ​ *​  ​ (​ 360.0​  ​ /​  _maxVoltage​ )))​  ​ %​  ​ 360.0;  double​  degrees ​ =​  heading ​ +​  ​ (​ _turnCounter​ .​ get​ ()​  ​ *​  ​ 360.0​ );      Putting it all together  Here’s my final code. I don’t know if things need to be in this order (as opposed to the order  presented above) but it certainly works for me.         // Constants //  private​  ​ static​  ​ final​  ​ int​  ANALOG_SAMPLE_RATE ​ =​  ​ 50;  private​  ​ static​  ​ final​  ​ int​  DEFAULT_ANALOG_MODULE ​ =​  ​ 1​ ;    private​  ​ static​  ​ final​  ​ double​  _sensingVoltageDifference ​ =​  ​ 0.6;    // Global fields //  private​  ​ AnalogTrigger​  _analogTrigger;  private​  ​ Counter​  _turnCounter;  private​  ​ AnalogTriggerOutput​  _analogTriggerFalling;  private​  ​ AnalogTriggerOutput​  _analogTriggerRising;    // In potentiometer's constructor //  _analogTrigger ​ =​  ​ new​  ​ AnalogTrigger​ (​ channel​ );  _analogTrigger​ .​ setFiltered​ (​ true​ );  _analogTrigger​ .​ setLimitsVoltage​ (​ minVoltage ​ +​  _sensingVoltageDifference​ ,​  maxVoltage ​ ­  _sensingVoltageDifference​ );  _analogTriggerFalling ​ =​  ​ new​  ​ AnalogTriggerOutput​ (​ _analogTrigger​ ,  AnalogTriggerOutput​ .​ Type​ .​ kFallingPulse​ );  _analogTriggerRising ​ =​  ​ new​  ​ AnalogTriggerOutput​ (​ _analogTrigger​ ,  AnalogTriggerOutput​ .​ Type​ .​ kRisingPulse​ );    AnalogModule​  ​ module​  ​ =​  ​ (​ AnalogModule​ )​  ​ Module​ .​ getModule​ (​ ModulePresence​ .​ ModuleType​ .​ kAnalog​ ,  DEFAULT_ANALOG_MODULE​ );  module​ .​ setSampleRate​ (​ ANALOG_SAMPLE_RATE​ );      _turnCounter ​ =​  ​ new​  ​ Counter​ ();  _turnCounter​ .​ setUpDownCounterMode​ ();  _turnCounter​ .​ setUpSource​ (​ _analogTriggerRising​ );  _turnCounter​ .​ setDownSource​ (​ _analogTriggerFalling​ );  _turnCounter​ .​ start​ ();    // getDegrees() function //  double​  heading ​ =​  ​ (((​ voltage ​ ­​  _minVoltage​ )​  ​ *​  ​ (​ 360.0​  ​ /​  _maxVoltage​ )))​  ​ %​  ​ 360.0;  double​  degrees ​ =​  heading ​ +​  _offsetDegrees ​ +​  ​ (​ _turnCounter​ .​ get​ ()​  ​ *​  ​ 360.0​ );​  ​ //I have an  "offset" that allows me to compensate for potentiometers that aren't installed exactly  straight   

https://www.pdf-archive.com/2016/05/25/turncounterhowto/

25/05/2016 www.pdf-archive.com

Ethyl Carbamate FAC 96%

Materials and methods Sample collective Between 1986 and 2004, 631 stone-fruit spirits submitted to the CVUA Karlsruhe were analysed for ethyl carbamate.

https://www.pdf-archive.com/2014/11/14/ethyl-carbamate-fac/

14/11/2014 www.pdf-archive.com

Inconel 718 TiG Welding 96%

Hardness of the sample post heat treatment…………………………...11 Table 3:

https://www.pdf-archive.com/2017/09/08/inconel-718-tig-welding/

08/09/2017 www.pdf-archive.com

Rapid quality control of spirit drinks and beer using FTIR 96%

The spectra were measured using a FTIR interferometer, which is purpose-built for the analysis of alcoholic beverages and includes an injection unit for liquids with automatic thermostating of the sample.

https://www.pdf-archive.com/2013/08/07/rapid-quality-control-of-spirit-drinks-and-beer-using-ftir/

07/08/2013 www.pdf-archive.com

Tequila jf048637f 96%

The spectra were obtained in duplicate and averaged for each sample.

https://www.pdf-archive.com/2014/11/14/tequila-jf048637f/

14/11/2014 www.pdf-archive.com

ORGANIC MATTER PORE CHARACTERIZATION IN GAS SHALE BY HIM 95%

Sample 1 was polished using Ar-ion milling machine on one surface.

https://www.pdf-archive.com/2016/04/13/organic-matter-pore-characterization-in-gas-shale-by-him/

13/04/2016 www.pdf-archive.com

Intuitive-Introductory-Statistics-TOC 95%

331 5.1 The Sampling Distribution for a Sample Average .

https://www.pdf-archive.com/2018/04/04/intuitive-introductory-statistics-toc/

04/04/2018 www.pdf-archive.com

11-17 Dreadneck Concentrates 10797-2 95%

Mildew via Plate Culture Sample ID S123010 Matrix:

https://www.pdf-archive.com/2015/11/19/11-17-dreadneck-concentrates-10797-2/

19/11/2015 www.pdf-archive.com

Musshoff SPDE Cannabinoids 94%

After adding deuterated internal standards, the sample was hydrolyzed with sodium hydroxide and directly submitted to HS-SPDE.

https://www.pdf-archive.com/2015/01/07/musshoff-spde-cannabinoids/

07/01/2015 www.pdf-archive.com

ABC Ethyl carbamate FTIR 94%

Apart from the actual content of EC in the sample, additional information was available from the FTIR spectra.

https://www.pdf-archive.com/2014/11/14/abc-ethyl-carbamate-ftir/

14/11/2014 www.pdf-archive.com

FinalBioReportMoradi 94%

GMO detection VIA PCR in an unknown food sample Name:

https://www.pdf-archive.com/2015/05/26/finalbioreportmoradi/

26/05/2015 www.pdf-archive.com

Coumarin FOCH 7023 94%

The optimal sample preparation for foods containing cinnamon was investigated and found to be cold extraction of 15 g sample with 50 mL of methanol (80%, v/v) for 30 min using magnetic stirring.

https://www.pdf-archive.com/2014/11/14/coumarin-foch-7023/

14/11/2014 www.pdf-archive.com

grindsred 94%

The sample from the JP-30, although in the same micron range of the other samples, displayed less desirable defects, manifested in the unevenness in grind consistency and the erratic shapes of the particles.

https://www.pdf-archive.com/2015/04/21/grindsred/

21/04/2015 www.pdf-archive.com

Uncommon Discovery Animal Genetics 93%

“How is that possible?” The sample gets prepared for DNA sequencing.

https://www.pdf-archive.com/2015/04/01/uncommon-discovery-animal-genetics/

01/04/2015 www.pdf-archive.com

4320031868-Maxx Long Leg Trunk with attached Wo 93%

Sample Types/ Documentations: Sample Type: Sample ID:

https://www.pdf-archive.com/2016/08/28/4320031868-maxx-long-leg-trunk-with-attached-wo/

28/08/2016 www.pdf-archive.com

supp 93%

Each image is a random sample of 64 different walk cycles from the distribution generated by a vanilla GAN, from top left around clockwise each image is 10000 iterations further into training than the last.

https://www.pdf-archive.com/2017/08/19/supp/

19/08/2017 www.pdf-archive.com