# Search

PDF Archive search engine
Last database update: 21 October at 09:56 - Around 76000 files indexed.

Show results per page

### Results for «trigonometric»:

Total: 15 results - 0.041 seconds

### Limits PDF100%

Trigonometric Limits (Memorize These!) 1.

https://www.pdf-archive.com/2012/03/18/limits-pdf/

18/03/2012 www.pdf-archive.com

### Geometry (Post Paper 1)90%

Edexcel Higher Geometry Checklist Alternate and corresponding angles Area of a circle Areas of composite shapes Areas of triangles, trapezia and parallelograms Bearings Circle terminology Circumference of a circle Congruent triangles Enlargements and fractional SF Perimeter of 2D shapes Plans and elevations Polygons Solve geometrical problems Vector arithmetic Volume of prisms Arc lengths and sectors Derive triangle results Enlargements and negative SF Loci Pythagoras Similarity and Congruence Standard constructions Surface Area Trigonometric ratios Volume Combined transformations Congruence and Similarity Standard trigonometric ratios Area of a triangle Cosine Rule Pythagoras and trig 2D and 3D Sine Rule Circle theorems Vector arguments and proof Green Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Geometry Title Amber 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 7 7 7 7 8 8 Area Red Approx.

https://www.pdf-archive.com/2017/05/25/geometry-post-paper-1/

25/05/2017 www.pdf-archive.com

### CALC14998 Course Outline Winter 201685%

Tangents, limits, and rules of differentiation for polynomial and trigonometric equations will be studied.

https://www.pdf-archive.com/2016/05/12/calc14998-course-outline-winter-2016/

12/05/2016 www.pdf-archive.com

### College Level72%

The point given below is on the terminal side of an angle θ.  Find the exact value of each of the six trigonometric    functions of θ.

https://www.pdf-archive.com/2017/02/09/college-level/

09/02/2017 www.pdf-archive.com

### Maths sheet-171%

Note the following trigonometric Identities a) cos 2 𝑥 + sin2 𝑥 = 1 b) cos(2𝑥) = cos 2 𝑥 − sin2 𝑥 = 2 cos 2 𝑥 − 1 = 1 − 2 sin2 𝑥 c) sin(2𝑥) = 2sin(𝑥)cos(𝑥) 2 2 𝑖

https://www.pdf-archive.com/2015/11/06/maths-sheet-1/

06/11/2015 www.pdf-archive.com

### Resume-Blank71%

I applied my mathematical background to solve trigonometric functions related to electrical work.

https://www.pdf-archive.com/2017/09/15/resume-blank/

15/09/2017 www.pdf-archive.com

### Algebra (Post Paper 1)70%

completing the square Translations and reflections of a function Solve quadratic inequalities Simultaneous equations (non-linear) Represent quadratic inequalities Real-life exponential graphs Quadratic equations (quadratic formula) Quadratic equations (needing re-arrangement) Graphs of exponential functions Geometric Sequences Factorising difficult quadratic expressions Expand the product of two or more binomials Composite functions Quadratic equations (completing the square) Graphs of trigonometric functions Gradients and area under a graph Algebra and Proof Equation of a tangent Equation of a circle Approximate solutions to equations using iteration.

https://www.pdf-archive.com/2017/05/25/algebra-post-paper-1/

25/05/2017 www.pdf-archive.com

### CV68%

https://www.pdf-archive.com/2015/10/31/cv/

31/10/2015 www.pdf-archive.com

### Maths 1A - Chapter wise important Questions67%

1B CHAPTER WISE WEIGHTAGE MATHS - 1A S.NO NAME OF THE CHAPTER LAQ(7M) SAQ(4M) VSAQ(2M) TOTAL 2 11M 1 FUNCTIONS 1 2 MATHEMATICAL INDUCTION 1 3 ADDITION OF VECTORS 4 MULTIPLICATION OF VECTORS 5 TRIGONOMETRY UPTO TRASFORMATIONS 6 TRIGONOMETRIC EQUATIONS 1 4M 7 INVERSE TRIGONOMETRIC FUNCTIONS 1 4M 8 HYPERBOLIC FUNCTIONS 9 PROPERTIES OF TRIANGLES 1 1 10 MATRICES 2 1 2 22M 7 7 10 97M SAQ(4M) VSAQ(2M) 7M 1 2 8M 1 1 1 13M 1 1 2 15M 1 TOTAL 2M 11M MATHS - 1B S.NO NAME OF THE CHAPTER LAQ(7M) TOTAL 1 LOCUS 1 4M 2 CHANGE OF AXES 1 4M 3 STRAIGHT LINES 1 4 PAIR OF STRAIGHT LINES 2 5 3D-GEOMETRY 6 D.C’s &amp;

https://www.pdf-archive.com/2017/10/15/maths-1a-chapter-wise-important-questions/

15/10/2017 www.pdf-archive.com

25/01/2014 www.pdf-archive.com

### dogan memisoglu bilgehan aktepe54%

In the point of view ,Cordic Algorithm was selected for FFT Algorithm with a reason of being most commonly used algorithm in daily life such as calculators, trigonometric functions approximation and hyperbolic function calculations.

https://www.pdf-archive.com/2017/05/12/dogan-memisoglu-bilgehan-aktepe/

12/05/2017 www.pdf-archive.com

### lawcos53%

000.1 - The Law of Cosines and Sines c 2010 Treasure Trove of Mathematics The law of cosines and the law of sines are two trigonometric equations commonly applied to find lengths and angles in a general triangle.1 1 The Law of Cosines Suppose we have a triangle labeled by the vertex points A, B, and C, sides a, b and c, and angles α, β, and γ, as shown in Figure 1.

https://www.pdf-archive.com/2011/07/28/lawcos/

28/07/2011 www.pdf-archive.com

### GDMathsGuide46%

There are many different trigonometric quantities, but there are six that you need to know about:

https://www.pdf-archive.com/2016/06/06/gdmathsguide/

06/06/2016 www.pdf-archive.com

### BCOM 1ST SYYLBUS46%

BCOM 1ST FINANCIAL ACCOUNTING Financial accounting:

https://www.pdf-archive.com/2013/08/17/bcom-1st-syylbus/

17/08/2013 www.pdf-archive.com

### MTH3230 Exam Sheet46%

If ∀(z ∈ ROC), X(z) = X(z), then xn = x ˆn Convolution Theorem yn = (x ∗ h)n Transfer Function X H(z) = hn z −n = Y (z)/X(z) H(z) = n∈N z −p P (z) b0 + b1 + · · · + bp = 1 + a1 z −1 + · · · + aq z −q Q(z) Frequency Response = H(eiλ ) N X If xn = ak eirk n k=0 Then yn = N X H(eirk )ak eirk n k=0 Sequence xn Autocovariance Xn = Step Function δn Un an Un n+k−1 n a Un k−1 Trigonometric Linearity g(x)fX (x) dx h∈Z f (λ) = f (λ + 2nπ), f (λ) = f (−λ) Inverse ZFourier TransformZ π π γ(h) = eihλ f (λ) dλ = cos(hλ)f (λ) dλ −π −π X General ARMA Yn = ψk Xn−k Variance var(X) = E[X 2 ] − E[X]2 Covariance cov(X) = E[XY ] − E[X]E[Y ] Correlation cov(X, Y ) ρ(X, Y ) = p var(X) var(Y ) Autocovariance γ(m, n) = cov(Xn , Xm ) γ(h) = γ(−h) k∈Z γY (h) = ψk ψj γX (h + k − j) k∈Z j∈Z Z–Transform Discrete F –Transform X X xn z −n XX fY (λ) = |Ψ(e−iλ )|2 fX (λ) X(eiλ ) = xn e−iλn Inversion I 1 xn = 2πi X(z)z n−1 dz C n∈Z 1 1 1 1−z −1 1 1−e−iλ 1 1−az −1 1 1−ae−iλ k 1 1−az −1 k 1 1−ae−iλ cos(ωn)Un 1−z −1 cos ω (z −1 −cos ω)2 +sin2 ω 1−e−iλ cos ω (e−iλ −cos ω)2 +sin2 ω sin(ωn)Un z −1 sin ω (z −1 −cos ω)2 +sin2 ω e−iλ sin ω (e−iλ −cos ω)2 +sin2 ω axn + bˆ xn ˆ aX(z) + bX(z) ˆ iλ ) aX(eiλ ) + bX(e xn−k z −k X(z) e−ikλ X(eiλ ) Modulation an xn X( az ) X( ea ) nxn d −z dz X(z) d i dλ X(eiλ ) (x ∗ x ˆ)n ˆ X(z)X(z) (x · x ˆ)n ψk Zn−k k∈Z Shifting Convolution X Spectral Density ∈ R &gt;

https://www.pdf-archive.com/2017/12/14/mth3230-exam-sheet/

14/12/2017 www.pdf-archive.com