Search


PDF Archive search engine
Last database update: 08 December at 18:10 - Around 76000 files indexed.


Show results per page

Results for «velocities»:


Total: 200 results - 0.071 seconds

PlayerScript2D 100%


 public class PlayerScript2D :

https://www.pdf-archive.com/2017/12/12/playerscript2d/

12/12/2017 www.pdf-archive.com

Summary of Chapter 2,3,4 98%

IGCSE Physics 0625 notes for topic 1:

https://www.pdf-archive.com/2015/02/02/summary-of-chapter-2-3-4/

02/02/2015 www.pdf-archive.com

SwerveInverseKinematicsDerivation 97%

Swerve Inverse Kinematics    Inverse Kinematics  The goal of inverse kinematics is to determine the appropriate inputs to a system (in our case,  commands to the turning and driving motors) in order to produce a desired output (a velocity  vector and a rotational speed and direction for the robot). For swerve, we don’t need to  determine what to send the motors directly, since we’re using control loops for that, but we do  need to tell those control loops what direction and speed we want for the wheels.    Determining the outputs  The outputs we want are determined by user input. I decided to keep it simple and set the x  component of the desired velocity vector based on the x­input of the left joystick, the y  component of the velocity vector based on the y­input of the left joystick, and the desired  rotation based on the x­input of the right joystick. I’m considering joystick inputs to be on a  range from ­1 to 1.    Some definitions:  V​  ­­ The maximum speed one of our wheel pods can move  max​ V​  ­­ The desired velocity vector of the frame (componentized into V​  and V​ )  f​ f, x​ f, y​ ⍵​  ­­ The desired rotation of the frame; I’m defining counterclockwise as positive  f​ L ­­ The vertical length of the robot (measured between contact points of wheels)  W ­­ The width of the robot (measured between contact points of wheels)  √ 2 R =​   L 4 2 + W4  ​  ­­ The robot’s radius of turning    Target settings based on my control scheme:  V​  = V​  * leftJoystickX  f, x​ max​ V​  = V​  * leftJoystickY  f, y​ max​ ⍵​  = V​  * rightJoystickX / R  f​ max​   Wheel motion  If there’s no rotation, each of the wheels clearly moves with the same velocity as the frame; they  should all face the same direction and move the same speed. This is identical to crab drive.  Applying rotation changes the target velocity of the wheel. Recall V = ⍵R from physics. Thus, on  the upper­left pod, the target velocity is componentized as follows. (Note to self: add diagram).  ­1​ ɸ ​  = tan​ (L / W) ­­ The angle between the frame and the first wheel pod  1​ V​  = V​  ­ ⍵​  * sin(ɸ ​ ) * R = V​  ­ ½ * ⍵​  * L  1, x​ f, x​ f​ 1​ f, x​ f​ V​  = V​  ­ ⍵​  * cos(ɸ ​ ) * R = V​  ­ ½ * ⍵​  * W  1, y​ f, y​ f​ 1​ f, y​ f​   The following is a table, by physical position on the frame, of the componentized wheel  velocities:  V​  = V​  ­ ½ * ⍵​  * L  1, x​ f, x​ f​ V​  = V​  ­ ½ * ⍵​  * W  1, y​ f, y​ f​ V​  = V​  ­ ½ * ⍵​  * L  2, x​ f, x​ f​ V​  = V​  + ½ * ⍵​  * W  2, y​ f, y​ f​ V​  = V​  + ½ * ⍵​  * L  1, x​ f, x​ f​ V​  = V​  ­ ½ * ⍵​  * W  1, y​ f, y​ f​ V​  = V​  + ½ * ⍵​  * L  1, x​ f, x​ f​ V​  = V​  + ½ * ⍵​  * W  1, y​ f, y​ f​   Note that they are very similar, except for the sign on the rotational influence term. Each pod  inherits the target velocity of the frame, and its velocity components are either added to or  subtracted from by the rotational influence term, depending on where they are.   Determining the wheel pod settings  Now that we know the target velocity for each wheel pod, deriving the target angle and speed  for each wheel is simple.   Θ​  = atan2(V​ , V​  ) ­­ The target angle for wheel pod n  n​ n,  y  ​ n, x​ |V​ | =  n​ √ ­­ The target speed for wheel pod n  (V n, x)2 + (V n, y)2  ​   Finally, because the target speeds may not be in the same range as your motor settings, if any  of the target speeds is greater than 1, divide all target speeds by the greatest target speed.  Room for improvement  Note that this technique does NOT account for the fact that wheels can turn backwards. In order  to reverse direction, it is more efficient to hold the wheel pods at the same angle and reverse  their wheels. However, this technique, when applied on its own, will instead turn the wheel pods  180° at full forward drive power.  

https://www.pdf-archive.com/2016/05/26/swerveinversekinematicsderivation/

26/05/2016 www.pdf-archive.com

Ronald W. Gurney. The Initial Velocities of Fragments from Bombs, Shell, Grenades 96%

405 THE INITIAL VELOCITIES OF FRAGMENTS FROM BOMBS, SHELL, GRENADES R.

https://www.pdf-archive.com/2019/11/16/untitled-pdf-document/

16/11/2019 www.pdf-archive.com

rapport (1) 95%

M. Letaief and S. Dhouib D.

https://www.pdf-archive.com/2015/11/02/rapport-1/

02/11/2015 www.pdf-archive.com

FILE 3o6u4twxua0be oumesaj.PDF 95%

For the given velocities, find the results of the fallowing questions.

https://www.pdf-archive.com/2017/07/23/file-3o6u4twxua0be-oumesaj/

23/07/2017 www.pdf-archive.com

Helbig and Thomsen, 2005, historical review anisotropy 1 94%

For example, McCollum 1) It explained why disregarding anisotropy in standard surand Snell (1932) reported on velocities measured on outcrops veys with restricted offsets was possible.

https://www.pdf-archive.com/2013/03/28/helbig-and-thomsen-2005-historical-review-anisotropy-1/

28/03/2013 www.pdf-archive.com

GPS and Relativity 92%

GPS AND RELATIVITY: AN ENGINEERING OVERVIEW Henry F.

https://www.pdf-archive.com/2018/02/15/gps-and-relativity/

15/02/2018 www.pdf-archive.com

WealthCycle-example 90%

Comparing the velocities of M1 and M2 provides some insight into how quickly the economy is spending and how quickly it is saving.

https://www.pdf-archive.com/2020/06/01/wealthcycle-example/

01/06/2020 www.pdf-archive.com

A. B. Basset. On the motion of a sphere in a viscous liquid 90%

If, therefore, the velocity is not slow the results obtained can only be regarded as a fiist approximation \ and a second approximation might be obtained by substituting the values of the component velocities hereafter obtained in the terms of the second order, and endeavouring to integrate the resulting equations.

https://www.pdf-archive.com/2020/02/28/a-b-basset-on-the-motion-of-a-sphere-in-a-viscous-liquid/

28/02/2020 www.pdf-archive.com

Johann Nikuradse. LAWS OF FLOW IN ROUGH PIPES 87%

3.5 Relationship between Average and . . . . . . . . . . . . . . . . Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

https://www.pdf-archive.com/2019/11/12/johann-nikuradse-laws-of-flow-in-rough-pipes/

12/11/2019 www.pdf-archive.com

Simulation report Paints 84%

ThermoTech – MixIT Sample Problem Report:

https://www.pdf-archive.com/2017/09/22/simulation-report-paints/

22/09/2017 www.pdf-archive.com

MCM 84%

When all the cars are traveling at the same velocities with constant distance between each other the whole system will stay constant.

https://www.pdf-archive.com/2017/01/24/mcm/

24/01/2017 www.pdf-archive.com

2012 devinli biophysj 84%

To further characterize the mechanical unfolding of GB1 under different loading geometries, we examined the dependency of the unfolding force on pulling velocity by measuring the force extension relationships under different pulling velocities.

https://www.pdf-archive.com/2012/12/13/2012-devinli-biophysj/

13/12/2012 www.pdf-archive.com

BOUNDARY LAYER CALCULATION METHODS AND APPLICATION TO AERODYNAMIC PROBLEMS 84%

A.25.Curvature effect of trailing edge wake on the external velocities and pressures A.26.Lift coefficient of the RAE 101-airfoil vs.

https://www.pdf-archive.com/2019/09/23/untitled-pdf-document-4/

23/09/2019 www.pdf-archive.com