PDF Archive

Easily share your PDF documents with your contacts, on the Web and Social Networks.

Share a file Manage my documents Convert Recover PDF Search Help Contact


Search


PDF Archive search engine
Last database update: 02 December at 04:19 - Around 84000 files indexed.

Show results per page

Results for «velocity»:


Total: 300 results - 0.076 seconds

PlayerScript2D 100%

hitInfoDown.collider != null)
 {
 isPressed = true;
 aboutToJump = true;
 
 jumped = false;
 //transform.position = currentPosition;
 
 //if (isBallThrown)
 //{
 //Destroy(GetComponent<Rigidbody2D>());
 GetComponent<Rigidbody2D>().velocity = new Vector2(0, 0);
 //Debug.Log("

https://www.pdf-archive.com/2017/12/12/playerscript2d/

12/12/2017 www.pdf-archive.com

Haberman-Morton. An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids 99%

Results of tests to determine the effect of the container walls on the velocity of rise are presented.

https://www.pdf-archive.com/2019/09/26/untitled-pdf-document-4/

26/09/2019 www.pdf-archive.com

gp-2014-1742.R1 98%

Image-domain wavefield tomography ABSTRACT 10 Waveform inversion is a velocity-model-building technique based on full waveforms as the input 11 and seismic wavefields as the information carrier.

https://www.pdf-archive.com/2014/12/01/gp-2014-1742-r1/

01/12/2014 www.pdf-archive.com

Summary of Chapter 2,3,4 98%

SPEED, VELOCITY AND ACCELERATION:

https://www.pdf-archive.com/2015/02/02/summary-of-chapter-2-3-4/

02/02/2015 www.pdf-archive.com

SwerveInverseKinematicsDerivation 97%

Swerve Inverse Kinematics    Inverse Kinematics  The goal of inverse kinematics is to determine the appropriate inputs to a system (in our case,  commands to the turning and driving motors) in order to produce a desired output (a velocity  vector and a rotational speed and direction for the robot). For swerve, we don’t need to  determine what to send the motors directly, since we’re using control loops for that, but we do  need to tell those control loops what direction and speed we want for the wheels.    Determining the outputs  The outputs we want are determined by user input. I decided to keep it simple and set the x  component of the desired velocity vector based on the x­input of the left joystick, the y  component of the velocity vector based on the y­input of the left joystick, and the desired  rotation based on the x­input of the right joystick. I’m considering joystick inputs to be on a  range from ­1 to 1.    Some definitions:  V​  ­­ The maximum speed one of our wheel pods can move  max​ V​  ­­ The desired velocity vector of the frame (componentized into V​  and V​ )  f​ f, x​ f, y​ ⍵​  ­­ The desired rotation of the frame; I’m defining counterclockwise as positive  f​ L ­­ The vertical length of the robot (measured between contact points of wheels)  W ­­ The width of the robot (measured between contact points of wheels)  √ 2 R =​   L 4 2 + W4  ​  ­­ The robot’s radius of turning    Target settings based on my control scheme:  V​  = V​  * leftJoystickX  f, x​ max​ V​  = V​  * leftJoystickY  f, y​ max​ ⍵​  = V​  * rightJoystickX / R  f​ max​   Wheel motion  If there’s no rotation, each of the wheels clearly moves with the same velocity as the frame; they  should all face the same direction and move the same speed. This is identical to crab drive.  Applying rotation changes the target velocity of the wheel. Recall V = ⍵R from physics. Thus, on  the upper­left pod, the target velocity is componentized as follows. (Note to self: add diagram).  ­1​ ɸ ​  = tan​ (L / W) ­­ The angle between the frame and the first wheel pod  1​ V​  = V​  ­ ⍵​  * sin(ɸ ​ ) * R = V​  ­ ½ * ⍵​  * L  1, x​ f, x​ f​ 1​ f, x​ f​ V​  = V​  ­ ⍵​  * cos(ɸ ​ ) * R = V​  ­ ½ * ⍵​  * W  1, y​ f, y​ f​ 1​ f, y​ f​   The following is a table, by physical position on the frame, of the componentized wheel  velocities:  V​  = V​  ­ ½ * ⍵​  * L  1, x​ f, x​ f​ V​  = V​  ­ ½ * ⍵​  * W  1, y​ f, y​ f​ V​  = V​  ­ ½ * ⍵​  * L  2, x​ f, x​ f​ V​  = V​  + ½ * ⍵​  * W  2, y​ f, y​ f​ V​  = V​  + ½ * ⍵​  * L  1, x​ f, x​ f​ V​  = V​  ­ ½ * ⍵​  * W  1, y​ f, y​ f​ V​  = V​  + ½ * ⍵​  * L  1, x​ f, x​ f​ V​  = V​  + ½ * ⍵​  * W  1, y​ f, y​ f​   Note that they are very similar, except for the sign on the rotational influence term. Each pod  inherits the target velocity of the frame, and its velocity components are either added to or  subtracted from by the rotational influence term, depending on where they are.   Determining the wheel pod settings  Now that we know the target velocity for each wheel pod, deriving the target angle and speed  for each wheel is simple.   Θ​  = atan2(V​ , V​  ) ­­ The target angle for wheel pod n  n​ n,  y  ​ n, x​ |V​ | =  n​ √ ­­ The target speed for wheel pod n  (V n, x)2 + (V n, y)2  ​   Finally, because the target speeds may not be in the same range as your motor settings, if any  of the target speeds is greater than 1, divide all target speeds by the greatest target speed.  Room for improvement  Note that this technique does NOT account for the fact that wheels can turn backwards. In order  to reverse direction, it is more efficient to hold the wheel pods at the same angle and reverse  their wheels. However, this technique, when applied on its own, will instead turn the wheel pods  180° at full forward drive power.  

https://www.pdf-archive.com/2016/05/26/swerveinversekinematicsderivation/

26/05/2016 www.pdf-archive.com

Ronald W. Gurney. The Initial Velocities of Fragments from Bombs, Shell, Grenades 96%

For this purpose one needs to know both the retardation in air and the initial velocity v0 of the fragments.

https://www.pdf-archive.com/2019/11/16/untitled-pdf-document/

16/11/2019 www.pdf-archive.com

rapport (1) 95%

It begins with a mathematical study of the existence and uniqueness of a solution of the Stokes equations, i.e the pressure and velocity fields of such flow.

https://www.pdf-archive.com/2015/11/02/rapport-1/

02/11/2015 www.pdf-archive.com

FILE 3o6u4twxua0be oumesaj.PDF 95%

Apollo and Starbuck are patrolling with their vipers each having a velocity of !

https://www.pdf-archive.com/2017/07/23/file-3o6u4twxua0be-oumesaj/

23/07/2017 www.pdf-archive.com

Helbig and Thomsen, 2005, historical review anisotropy 1 94%

ABSTRACT The idea that the propagation of elastic waves can be anisotropic, i.e., that the velocity may depend on the direction, is about 175 years old.

https://www.pdf-archive.com/2013/03/28/helbig-and-thomsen-2005-historical-review-anisotropy-1/

28/03/2013 www.pdf-archive.com

Moment Theory In A Nutshell 93%

Velocity and Snell's Law be true, clearly continued human divisible units, of the Universe There is a special undiscovered property of velocity in relation to the speed of light via Snell's law.

https://www.pdf-archive.com/2015/01/20/moment-theory-in-a-nutshell/

20/01/2015 www.pdf-archive.com

midterm comp 93%

As the velocity of the pod increases, the mass flow rate that must enter the compressor also increases.

https://www.pdf-archive.com/2015/10/15/midterm-comp/

15/10/2015 www.pdf-archive.com

GPS and Relativity 92%

The Velocity Effect (Lorentz Contraction) Case (1) is the province of special relativity.

https://www.pdf-archive.com/2018/02/15/gps-and-relativity/

15/02/2018 www.pdf-archive.com

FM 5-25, Explosives and Demolitions 92%

Explosives are classified as low or higb according to the detonzztirrg velocity or speed (in feet per second) at which this change takes place and other pertinent characteristics.

https://www.pdf-archive.com/2016/05/31/fm-5-25-explosives-and-demolitions/

31/05/2016 www.pdf-archive.com

WealthCycle-example 91%

This chart shows the MZM velocity of the cash currency supply.

https://www.pdf-archive.com/2020/06/01/wealthcycle-example/

01/06/2020 www.pdf-archive.com

A. B. Basset. On the motion of a sphere in a viscous liquid 90%

(ii.) when th e sphere is constrained to move w ith uniform velocity in a straig h t line ;

https://www.pdf-archive.com/2020/02/28/a-b-basset-on-the-motion-of-a-sphere-in-a-viscous-liquid/

28/02/2020 www.pdf-archive.com

Exoplanet Paper (1) 89%

12/16/11 ON THE DETECTION OF EXOPLANETS VIA RADIAL VELOCITY DOPPLER SPECTROMETRY Joseph P.

https://www.pdf-archive.com/2014/05/07/exoplanet-paper-1/

07/05/2014 www.pdf-archive.com

Exoplanet Paper 4514 89%

12/16/11 ON THE DETECTION OF EXOPLANETS VIA RADIAL VELOCITY DOPPLER SPECTROMETRY Joseph P.

https://www.pdf-archive.com/2014/05/06/exoplanet-paper-4514/

06/05/2014 www.pdf-archive.com

Pike NAR L3 Package 87%

Velocity at launch guide departure:

https://www.pdf-archive.com/2016/11/25/pike-nar-l3-package/

25/11/2016 www.pdf-archive.com

lister-et-al-1978 85%

2 all radial lines have angular velocity with respect to their reference frame (outer circle).

https://www.pdf-archive.com/2015/08/27/lister-et-al-1978/

27/08/2015 www.pdf-archive.com

Taylor, G. I. The Mechanics of Large Bubbles Rising through Extended Liquids and through Liquids in Tubes 85%

A theoretical discussion, based on the assumption that the pressure over the front of the bubble is the same as that in ideal hydrodynamic flow round a sphere, shows that the velocity of rise, U , should be related to the√radius of curvature, R, in the region of the vertex, by the equation U = 23 · g · R;

https://www.pdf-archive.com/2020/02/23/untitled-pdf-document-6/

23/02/2020 www.pdf-archive.com

The behavior of gas bubbles in relation to mass transfer 85%

The upward velocity of a bubble in water varies with the diameters of both the bubble and the column of liquid in which it moves, and also with the rate of production of bubbles.

https://www.pdf-archive.com/2020/03/06/the-behavior-of-gas-bubbles-in-relation-to-mass-transfer/

06/03/2020 www.pdf-archive.com

2012 devinli biophysj 85%

Constant-velocity AFM-pulling experiments were performed at 400 nm/s unless otherwise noted.

https://www.pdf-archive.com/2012/12/13/2012-devinli-biophysj/

13/12/2012 www.pdf-archive.com

MCM 85%

We looked at these effects in terms of the rate of deceleration, the period of deceleration, the distance between the decelerating car and a chosen car behind it, initial velocity and a constant c used to capture humans’ tendency to decelerate more then necessary.

https://www.pdf-archive.com/2017/01/24/mcm/

24/01/2017 www.pdf-archive.com

Simulation report Paints 84%

34 RPM 4 5 Liquid Viscosity Shear rate, 1/s Shear stress, Pa Actual Viscosity, Pa-s Predicted viscosity, Pa-s 0.0157 3.69 235 249.77 0.0246 4.63 188 186.54 Power law fluid 0.0386 5.52 143 139.18 0.0606 6.46 107 103.82 𝜇 = 𝐾 𝛾 𝑛−1 0.0951 7.5 78.9 77.46 0.149 8.68 58.2 57.85 0.234 10 42.9 43.14 0.367 11.6 31.7 32.20 0.576 13.6 23.6 24.02 0.904 15.8 17.5 17.92 1.42 18.5 13.1 13.36 2.23 21.9 9.83 9.96 3.49 25.9 7.43 7.45 5.48 30.8 5.63 5.55 8.59 36.8 4.29 4.15 K = 16.783 n = 0.35 where, K – consistency index n – flow behavior index 𝛾 – shear rate (1/s) 𝜇 – viscosity (Pa-s) Velocity distribution • • • Velocity near the impeller is high but it quickly decreases as we move away from the impeller The bottom hydrofoil impeller shows radial profile and has formed it’s own circulation loop The average velocity in the vessel is 0.49 m/s 7

https://www.pdf-archive.com/2017/09/22/simulation-report-paints/

22/09/2017 www.pdf-archive.com